HEIDENHAIN

ND 2100G GAGE-CHEK

Formulas

English (en)
2/2010

Gage-Chek Formulas Quick Reference

Metronics part number: 11A10604 Rev 0
Publishing date:
May, 2007
Gage-Chek software version: 2.34
Printed in United States of America

All information set forth in this document, all rights to such information, any and all inventions disclosed herein and any patents that might be granted by employing the materials, methods, techniques or apparatus described herein are the exclusive property of Metronics Inc., Bedford, New Hampshire.

Terms, conditions and features referenced in this document are subject to change without notice.

No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of Metronics, Inc.. Requests to Metronics, Inc. for permission should be addressed to the Technical Services Department, Metronics, Inc., 30 Harvey Road, Bedford, New Hampshire 03110. The Technical Services Department can be reached by phone at (603)-622-0212.

Limit of liability and disclaimer of warranty

While Metronics, Inc. exercised great care in the preparation of this document, Metronics makes no representations or warranties with respect to the accuracy or completeness of the contents of the document and specifically disclaims any implied warranties of merchantability or fitness for a particular purpose. The advice, methods and instructions contained in this document might not be suitable for your situation. When in doubt regarding suitability, you are encouraged to consult with a professional where appropriate. Metronics will not be liable for any loss of profit or any damages, including but not limited to special, incidental, consequential or other damages.

Trademarks

Metronics and Gage-Chek are registered trademarks of Metronics, Inc. and its subsidiaries in the United States and other countries. Other trademarks are the property of their respective owners.

Adding formula functions

Add functions to the formula line by pressing softkeys below and to the right of the LCD screen. The example sequence of softkey presses shown below creates the formula: $\quad \mathrm{A}=\mathrm{C} 1$

Available formula functions

The map of available formula functions shown below can be used to find and add specific functions to the formula line. For example, to add the Din function, press the Other softkey repeatedly until Xtra is diplayed at the right of the LCD, press the Xtra softkey to display the Xtra menu and then select Din from the menu.

Formula function summary

Key:

Anything in brackets [] is optional
... means the previous optional pattern can repeat
| means "or"

Syntax

C\#
$\operatorname{DIM}[([v 1][, v 2])[, v 3])]$

Description

Returns the value of channel number (1..16)
Returns the value of the visible dimension
DIM (A..Z|0..9 [A..Z|0..9] [A..Z|0..9])
optionally at record number v1 (0+)
optionally for part number v2, optionally with a default value v3
HDIM

+ Addition
Subtraction
Multiplication
Division
Conditional "greater than"
Conditional "greater than or equal to"
Conditional "less than"
Conditional "less than or equal to"
Conditional "equal to"
Conditional "not equal to"
Logical And
Logical Or
Statement separator (must be outside of all parentheses levels)
Number (can have units mm, in, deg, etc... following to it)
Returns v1 raised to the v2 power
Returns the absolute value of v 1
Returns the arc cosine of v 1
Returns the sin of v1
Prompt "Abc" after every data record entry, and when the system is started
Prompt "Abc" every time this function is executed
Prompt "Abc" when the system is started
Displays "Abc" when the function is executed, for \# seconds
Returns the arc tangent of v1
Returns the average value of all arguments
Makes a beep sound
Return v2 if v1 is true, optionally return v4 if v3 is true, else return v5
Resets existing trigger \# (0..9) for reuse

cos(v1)	Returns the cosine of v1
DateStr	Returns the current system date
din(v1)	Return the status (0/1) of line v1 (1..5)
Display(dim,numaxes)	Sets the current graph display starting at dimension dim, with num
	axes (dimensions) displayed
davg(v1,depth)	Returns the average of v1 over time over a max of depth values
dmd(v1,depth)	Returns the median of v1 over time over a max of depth values
dmn(v1[,v2])	Returns the min of v1 over time, or can return the value of
	v2 at v1 min. v3 default val
dout(v1,v2)	Set output line v1 (1..9) to v2 (0/1), returning the current value of
output line v1	

LookupXXX (continued)	Returns values for various setting:
CalcPp(dim)	Returns the current part's calculated pp for the given dimension
CalcPpk(dim)	Returns the current part's calculated ppk for the given dimension
CalcR(dim)	Returns the current part's calculated range for the given dimension
CalcRBar(dim)	Returns the current part's calculated r bar for the given dimension
CalcSig(dim)	Returns the current part's calculated sigma for the given dimension
Datum	Returns 1 if in incremental datum mode, 0 if not
HiLimit(dim)	Returns the current part bar graph high limit setting for the given dimension
HiWarn(dim)	Returns the current part bar graph high warning setting for the given dimension
IsDD	Returns 1 if current angular display is decimal degrees, 0 if not
IsDMS	Returns 1 if current angular display is degrees-minutes-seconds, 0 if not
IsInch	Returns 1 if current linear display is in inches, 0 if not
IsMM	Returns 1 if current linear display is in millimeters, 0 if not
LCL(dim)	Returns the current part's calculated lcl value for the given dimension
LoLimit(dim)	Returns the current part bar graph low limit setting value for the given dimension
LoWarn(dim)	Returns the current part bar graph low warning setting value for the given dimension
MaxSGrp	Returns the max num of sub groups that can be stored in the current part's database
NextId	Returns the record number that will be assigned to the next record added to the database
Nominal(dim)	Returns the current part bar graph nominal setting value for the given dimension
NumRecs	Returns the number of data records in the current part's spc database
RecDate(index)	Returns the data record date for the record at index number (0..2000, 0 is the newest)
RecTime	Returns the data record time for the record at index number (0..2000, 0 is the newest)
RLCL(dim)	Returns the current part's calculated range lcl value for the given dimension
RUCL(dim)	Returns the current part's calculated range ucl value for the given dimension
SGrpSize	Returns the size of sub groups in the current part
UCL(dim)	Returns the current part's calculated ucl value for the given dimension
XBarLCL(dim)	Returns the current part's calculated x bar lcl value for the given dimension
XBarUCL(dim)	Returns the current part's calculated x bar ucl value for the given dimension
Loop(lc,ev)	lc is the times to repeat the functions in ev (note that functions can be $\& \&$ together)
MastrMaxG\#	Causes a max master calibration to be performed at the current pos, for group \# (1..3)

MastrMinG\#	Causes a min master calibration to be performed at the current pos, for group \# (1..3)
max(v1,v2[,v3]...)	Returns the max value of all arguments
med(v1,v2[,v3]...)	Returns the median value of all arguments
$\min (\mathrm{v} 1, \mathrm{v} 2[, \mathrm{v} 3] \ldots$)	Returns the min value of all arguments
$\bmod (\mathrm{v} 1, \mathrm{v} 2)$	Returns v1 modulus v2
OnEventXXX(v1)	Wait for an event XXX and then evaluate and return v1, else return the last evaluated v1
DataEntr	Occurs after a data record is entered into the database
DispOff	Occurs after the display is turned off using the "Red" front panel button
DispOn	Occurs after the display is turned on using the "Red" front panel button
Edge1	Occurs after an external edge event has happened on external edge line 1
Edge2	Occurs after an external edge event has happened on external edge line 2
Edge3	Occurs after an external edge event has happened on external edge line 3
HxLx	Occurs after the HwLx function has "latched" a new value
Key	Occurs after the chosen front panel key press has been pressed
PartClr	Occurs after the spc database is cleared (emptied) by the user
PartLoad	Occurs after a new part has been switched to
PartUnld	Occurs before a new part is switched to
Playback	Occurs after a Scan has completed, 1 per captured data record
Power	On Occurs at startup
Trig	Occurs when a Trigger has been activated (i.e. Set)
Part\#	Sets the current part number to \#
pi	3.1415926535897932384626433832795
Preset(dim,v)	Presets the given dimension to the given value (at the current position)
Relay(v1,v2[,timed])	Set external relay v1 (1..2) to v2 (0/1) and return v2, revert after timed secs
Remark	Adds a comment to the formula, otherwise has no effect
Report\#Rec	"Reports" \# most recent records
ReportAll	"Reports" all records
ReportNew	"Reports" all records that haven't been "Reported" before
ReportSel	"Reports" the selected record
RsetDyn	Resets (i.e. restarts) the avg, dmn, dmx, HwDmn, HwDmx, HwLx, med, Scan functions
Scan(ch,st,sp,dp,to)	Collects all channel data as fast as possible, using (ch) as the master channel (channel, start value, increment, depth, timeout)
Send[(v,res)]	"Sends" out the supplied value (v) at the given display resolution (res), or the cur dim
Send\#Rec	"Sends" \# most recent records
SendAllRec	"Sends" all records
SendMsg"ABC"	Outputs the character string ABC out the rs232 port
SendNewRec	"Sends" all records that haven’t been "Sent" before
SendSelRec	"Sends" the selected record

SetTrig\#

SetupXXX
BarMax (dim,v)
BarMin(dim,v)
HiLimit(dim,v)
HiWarn(dim,v)
LoLimit(dim,v)
LoWarn(dim,v)
Nominal(dim,v)
$\sin (\mathrm{v} 1)$
sqrt(v1)
$\tan (\mathrm{v} 1)$
Time([v1][,v2])

TimeStr
Trip(,,,)
Trip(v1,v2,v3,[v4])
Var\#([v1])
Xlatch(C\#,v2,v3)
Sex

Sets the current sequence number to 1 without saving any records Returns the current sequence number (0 if there is no other sequence steps), or optionally enters a new data record when the sequence number $=\mathrm{v} 1$ Returns v2 if the current sequence number is equal to v1, else if the sequence number is less than v1, it returns the value of v2 for the last time the sequence number was equal to v 1 , else if the sequence number is greater than v1 a"blank" result is returned

Fires trigger event \# (0..9)
Setup functions for the specified dimension:
Sets and Returns the current part bar graph max value (v)
Sets and Returns the current part bar graph min value (v)
Sets and Returns the current part bar high limit value (v)
Sets and Returns the current part bar high warning value (v)
Sets and Returns the current part bar low limit value (v)
Sets and Returns the current part bar low warning value (v)
Sets and Returns the current part bar nominal value (v)
Returns the sine of v 1
Returns the square root or v1
Returns the tangent of v1
Returns the number of seconds that have elapsed since startup, or optionally the number of seconds that have elapsed greater than or equal to v 1 seconds, or optionally the amount that v2 changed over v1 seconds.
Returns the current system time Enter a new data record
Enter a new data record when v1 passes through v2 then back through v2 and through v3, or optionally wait v4 seconds before entering the record Return the value of variable \# (1..20), or optionally assign v1 to the variable External Edge Latch. C\# = Channel (1..16), v2 = Edge Line \# (1..3), v3 = 0/1

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
家 +49 8669 31-0
[FAX] +49 86695061
E-mail: info@heidenhain.de
www.heidenhain.de

