HEIDENHAIN

User's Manual

IK 320
VMEDbus Counter Card

7/2004

Validity

This manual describes the IK 320 beginning with software version

246 118-08

Table of Contents

L= 0 T3 1o o1 =Y o TR 4
L RV Z=T £57To o 1= OO 4

1.2 ACCESSONIES ..ttt 4

2. IMPOrtant INFOrMAtION.........oo e s e s e e s e s e ae e s s e e e s se e s e an e e sann e e s s sseesesnnesenneennnnesennennnnenan 5
3. Technical Description of the I 320..............ooi e e s e s sn e s e e s ne e s mne e s 6
3.1 Access Time 10 Measured ValUEScoouiiiiiiii e 7

L S o - T 1T R 8
4.7 VMEDUS INTEITACE ... 8

4.2 MONITOr LED oo e, 8

4.3 ENCOder INPULS TK 320 A oot 8

4.4 Encoder Inputs 1K 320.1 (Special VEIrSION)iiiiiiiiiiiiiicie e 9

4.5 Encoder INPUES TK B20 V... oo 9

4.6 ENCOAET OULPULS ©.oeiiiiiit e 10

4.7 EXTErNal FUNCLIONS ..o 10

LT A Lo =TT T 1
5.1 SWItCheS @Nd JUMIPETSoiiiiiiiiiiie et 11

5.2 VME Address Space A24 (Address Modifier AM: $39)coiiiiiiiiniiiieicee e 11

5.3 VME Address Space A16 (Address Modifier AM: $29) ..o 12

5.4 CommuUNICation DY INTEITUDT ...ttt 13

5.4.1 From the K 320 t0 the IMaSsTercooiiiiiiiiii e 13

5.4.2 From the Master 10 the 1K 320 ... 14

5.5 Switch Settings (EXaMIPIE)oiiiiiiiee e 14

6. Data, Parameters, and Data TranSTer.........cccueeuiiiiiiiiiiii e rrrrrr s s s e e s s s e s s s aas e s s e s e e ee s s s nssnssas s asseeeeeessansnnnsansannrses 15
8.1 DAT8 .o 15

B.2 ParAMNETETS ..ottt 23

728 5T T T T T P 27
7.1 Interruptibility of the FUNCLIONS ..ot 27

7.2 POWEr ON Self TEST (POST) it 28

7.3 Traversing the Reference Marksoooiiiiiiiiii e, 28

7.4 Compensation Run to Compensate for Deviations in the Encoder Signals............ccccccoviirnne. 30

7.5 Reading and Writing Compensation ValuEsooiiiiiiiiiiii e 31

7.5.1 Reading Compensation ValUESccc.vviiiiiiiiiiiicc e 32

7.5.2 Writing Compensation ValUesS...........coiuiiiiiiiii e 32

8. Interrogating a POSition ValUe.......... ..o it nnn e 33
8.1 Latching the POSItioN ValUEooooiiii e 33

8.1.1 Pin Layout, Connection for External FUNCtioNS (X41)cooiiiiiiiiiiieiieieeeci 33

8.1.2 External, DireCt LatChingcooiiiiiiiiiiii e 34

8.1.3 External, Indirect Latching through Interrupt ... 35

8.1.4 VMEDUS Direct LatChingcoooiiiiii e 35

8.1.5 VMEbus Direct Latching within One Group.........ccooviiiiiiiiiiieicecccee e 35

8.1.6 VMEbus Direct Latching over Several GroupS...........ccoooviiiiiiiiiiieeceeceeeee e 35

8.1.7 VMEDUS INdireCt LatChingcooiiiiiiiiiiic e 36

8.2 Calculating the POSItIoN ValUEooiiiiiiiiiiii e 37

L= O S o T =T 0 11 ' X 39
9.1 The Header File SAMPLE.H ... o 40

9.2 Program Example SAMPLE.C ... e 41

9.3 The Header File TKB20.H......ooiiiiii e 43

9.4 The Functions in TKB20.H ... e 45

10. Specifications of the IK 320............cccciiiiii e ————————— 61

1. Items Supplied

1.1 Versions

1.2 Accessories

K 320 VMEbus counter card, driver software and User’'s Manual

IK320 A VMEbus counter card with encoder inputs for sinusoidal
286 939 01 current signals (11 pApp).
1K 320.1 Special version: VMEbus counter card with encoder inputs for
286 839 11 sinusoidal current signals (22 pApp).
IK320V VMEbus counter card with encoder inputs for sinusoidal
286 939 51 voltage signals (1 Vpp).
e Max. 30 m * L
[~ \
310 195-
320 A x> X | APE é VM 101
X3 E 309 785-xx == S e—
X4 -
[['B 309 7871-xx —=— Subsequent
X2 [['3 ” —=—| electronics
>— =
315 650-02
X41 H —
Varies according to input circuitry of subsequent electronics _
‘\g Max. 250 m * ﬁ
X1 EHE 310 196-xx I-—'I_u_|| ROD
K320V b
309 784-xx LS
X3 I L | I
X4
> =]
D:ID 309 787-xx Subsequent
X2 m: —=— electronics
— =
315 650-02
il Sy
P Varies according to input circuitry of subsequent electronics -

*For 5.1-V power supply and current consumption of the encoder < 65 mA.

309 781-xx Connecting cable from encoder output to another display or control
315 650-02 Connector for external functions at connection X41

IK 320 A/IK 320.1

309 785-xx Cable adapter with coupling for HEIDENHAIN encoders;
9/9-pin standard length 0.5 m

310 195-xx Cable adapter with connector for HEIDENHAIN

9/9-pin encoders with flange socket; standard length 0.5 m 1K 320 V
IK 320 V

309 784-xx Cable adapter with coupling for HEIDENHAIN encoders;
15/12-pin standard length 0.5 m

310 196-xx Cable adapter with connector for HEIDENHAIN

15/12-pin encoders with flange socket; standard length 0.5 m

2.

Important Information

i

Danger to internal components!

When handling components that can be damaged by electrostatic discharge (ESD), follow the
safety recommendations in EN 100 015. Use only antistatic packaging material. Be sure that the
work station and the technician are properly grounded during installation.

Notes on the terms used:

e Numbers in hexadecimal notation are identified by $, for example: $FF.

e Inverted signals contain a minus sign before the signal name, e.g. -PULSE1.

e The encoder inputs are designated Axis 1 (corresponding to connection X1) and Axis 2
(corresponding to connection X3).

e The term “to latch” means that the count value is entered in the data register. This count
value must then be interrogated, i.e. read by the software and stored in the computer or
displayed on the screen.

e Please refer to the technical literature on the VMEbus for the significance of the VMEbus
signals and related terms.

3. Technical Description of the IK 320

You may connect two HEIDENHAIN encoders with sinusoidal current signals (IK 320 A) or voltage
signals (IK 320 V) to the IK 320 VMEbus counter card. The positions of the two encoders are
transmitted to the computer and further processed by the software.

The 1K 320 is ideal for applications requiring high resolution of encoder signals.

Block diagram:

o0 Uy ADC [
/ 14 bits
o ADC
> — U/U 14 bits
X1 >% :
[g finy
32-bit
r— counter [~ |
L_ o —| T
X2 N\
>
—
Compensation | _|
> logic
\90" \
$-U/U > ADC _—
/ / 14 bits
0 \ ADC -
> _% > 14 bits
X3
>Fi I
- 32-bit ||
counter
-— o— LT
X4
I
A
Latching CPU EPROM
logic < 68EC020 RAM
X41 A —| Timer |
RAM
:
VMEbus -
Interface Test clip

I VMEbus Backplane

The 1K 320’s interpolation electronics subdivides the signal period of the input signal 4096-fold.
The 44-bit wide measured value is formed from the interpolation value (12 bits) and the value of
the period counter (32 bits). The IK 320 stores the measured values in the 48-bit data registers; it
does not use the bottom 4 bits. The measured values can be latched either through external
inputs, via software, or by reference-mark traverse. Then they can be transferred to the computer
via the VMEbus.

You can improve the accuracy of the measurement result if you determine the signal shape of the
sinusoidal encoder signals by means of a compensation run. The IK 320 analyzes the signal shape
and stores compensation values at up to 4096 compensation points for the signal shape of the
analog signals.

Communication between the computer (master) and the IK 320 (slave) takes place by means of
interrupts and a common RAM for data and parameters (see Chapter 6 "Data, Parameters and
Data Transfer").

3.1 Access Time to Measured Values
The time to access measured values is approximately 400 ys per axis.

4. Hardware

4.1 VMEbus Interface
Specification:
Size:
VME connection:
Interrupter:
Address space A16:

Address space A24:
Interrupt lines:
Voltages:

ANSI/IEEE STD 1014-1987, IEC 821 and 297

Double height board (233.4 mm x 160 mm x 20 mm), 1 slot
Connector J1 (for pin layout see VMEbus literature)

D08(0) ROAK

Slave, D08(O) (port)

Slave, ADO (synchronous latching)

Memory requirement: 16 kilobytes per card

Slave, D16, D08 (EO), 16 kilobytes

7, selectable with jumpers

+5V: +0256V/-0.125V 50 mVpp Noise
+12V: +0.60V/-0.36V 20 mVpp noise*
-12V: -060V/+036V 20 mVpp noise*

+ 5V STDBY: +025V/-1.70V

* not according to VME specification

@ Noise levels on + 12 V are not specified according to VMEbus. The noise levels on £ 12 V must
be held as low as possible.

Noise in the power supply can impair the measuring accuracy.

Current consumption
(max):

+12V 160 mA
-12V 160 mA
+5V 1.2 A

+ 5V STDBY 100 A

@ The stand-by voltage supplies the compensation value memory.

4.2 Monitor LED

There is a green monitor LED on the board — near the VMEbus connector. The monitor LED
flashes on power-up at a frequency of approx. 1 Hz and indicates that the card is working. While
the encoder signal is being scanned — during the compensation run — the LED does not flash (it
remains either on or off). In the event of local faults on the card, it flashes at approximately double
the frequency. You can clear this error message only by powering down the system or by a

RESET on the VMEbus.

4.3 Encoder Inputs IK 320 A

You can connect HEIDENHAIN linear encoders or angle encoders with sinusoidal current signals |4

and |, to the IK 320 A.

Signal amplitudes: l1, 1, (0°, 90°) 7 UApp to 16 pApp
lp (reference mark) 3.5 YA to 8 pA usable component
Signal threshold for error message |y, |, <2.5 puApp

Maximum input frequency

50 kHz

Cable length

Max. 30 m: for 5.1-V supply voltage and
encoder current consumption < 65 mA

Connection X1, X3 for encoders
D-sub connection with female contact (9-pin)

Pin No. Assignment
1 l1—
2 0V (Uy)
3 I, —
4 Internal shield
5 lo—
6 1+
7 5V (Up)
8 lo +
9 lo +
Housing External shield
4.4 Encoder Inputs IK 320.1 (Special Version)
Signal amplitudes: l1, 1, (0°, 90°) 14 pApp to 30 pApp
lg (reference mark) 10 pA to 30 pA usable component
Signal threshold for error message |y, |, <6 pApp
Maximum input frequency 50 kHz
Cable length Max. 30 m

4.5 Encoder Inputs IK 320 V
You can connect HEIDENHAIN linear encoders or angle encoders with sinusoidal voltage signals A
and B to the IK320 V.

Signal amplitudes: A, B (0°, 90°) 0.6 Vpp t0 1.2 Vpp
R (reference mark) 0.2 V to 0.85 V usable component
Signal threshold for error message A, B <0.22 Vpp
Maximum input frequency 50 kHz
Cable length Max. 250 m: for 5.1-V supply voltage and
encoder current consumption < 65 mA

Connection X1, X3 for encoders
D-sub connection with female contact (15-pin)

Pin No. Assignment
A+

0V (Uy)

B+

+ 5V (Up)

Do not assign

—

Do not assign
R —
Do not assign
A -

oV
(sensor line)

11 B-

12 + 5V (sensor line)

OQlo|N|ojlofblwN

N
o

13 Do not assign
14 R+
15 Do not assign

Housing External shield

4.6 Encoder Outputs
The IK 320 additionally transmits the encoder signals of inputs 1 (connection X1) and 2 (connection
X3) to two 9-pin D-sub connectors in the form of sinusoidal current signals (11 uApp). Connect
these outputs only to subsequent electronics with input amplifiers supplied with £ 12 V; other
input amplifiers will be overloaded (Ug on the IK 320 is 0 V). Adapter cables (Id. Nr. 309 781-01) for
connecting HEIDENHAIN position display units are available (see “1.2 Accessories”). Do not
connect any EXE interpolation electronics!

Encoder outputs X2, X4
D-sub connection with male contact (9-pin)

Pin No. Assignment

—_

|1 -
0V (Uyn)

Iy —
Not connected

lo—

I+

Not connected

lo +

Ol | Nl b|lw|N

lo +

Housing External shield

4.7 External Functions
A 9-pin D-sub connector is provided for external latching of measured values and for synchronous
latching of multiple cards. The required connector (Id. Nr. 315 650-02) can be ordered from
HEIDENHAIN. For a more detailed description of this connection, refer to “8.1 Latching the
Position Value.”

10

5. Addressing

5.1 Switches and Jumpers
The 1K 320 has two DIP switches and three jumpers. DIP switch Sl determines the address of

VME address space A16 and switch Sll the address of VME address space A24.
Jumpers J1 and J2 determine the interrupt request and interrupt acknowledge line. Jumper J3
determines the behavior of the IK 320 during an “ADDRESS ONLY cycle” (ADO cycle).

Jumper J1

Switch SI Switch SlI f HIRIE
ON O N =
HHHHHHHH HHHHHHHH
123456 123456

Jumper J2
RHIBEHEHE

1234567

Jumper J3

==

5.2 VME Address Space A24 (Address Modifier AM: $39)
Data is exchanged between the master and IK 320 through a common 16-KB RAM (in VME

address space A24) on the IK 320.

By means of the 8-pin DIP switch SlI on the card, you set the IK address in the upper quarter of
address space A24 (range $C00000 - $FFFFFF).

The basic address of the card is calculated as follows:

Basic address (BA) = $C00000 + (DIP switch SI1*$4000)

11

Address space 24

$000000 $C00000
B —_—

$C04000

$C08000

256 ranges

$000000

$FF8000 _

$FFCO00 _

5.3 VME Address Space A16 (Address Modifier AM: $29)

12

The IK 320 provides two functions in address space A16:

e Local interrupt on the 1K 320.

e Latch signal (synchronous latching) and local interrupt. A latch signal can be generated on
several cards simultaneously.

Address space A16 is divided into eight ranges (corresponding to groups) by S8, S7 and S6 (DIP

switch Sl).

Address space A16

$0000

\

$2000

\ 4

$4000

$6000

\ 4

$8000

\/

$A000

\/

$C000

\ 4

$E000

\/

The master can generate a common latch signal for all cards with the same group setting (DIP
switch Sl: S8, S7, S6) by carrying out an ADDRESS ONLY cycle at address $00 within this range
(the ADDRESS ONLY cycle does not return -DTACK). If an ADO cycle is not possible, see “8.1.5
VMEbus Direct Latching within One Group."

Within one group, the cards are differentiated from the DIP switch S1 by the switches S5 to S1.
The addresses for interrupt generation are in the lowest 32 words within the 8-KB range. Writing
to a set interrupt address generates a local interrupt.

BA+$00
BA+$40 Synchronous

Interrupt

Interrupt

Interrupt

@ Do not set address 0 with S1 to S5 of DIP switch SI.

The set addresses are calculated as follows:

Group address = (DIP switch SI: S8, S7, S6) * $2000
Interrupt address = Group address + (DIP switch Sl: S5-S1)* 2

5.4 Communication by Interrupt

5.4.1 From the IK 320 to the Master

The IK 320 generates an interrupt on the VMEbus for messages to the master. The master must
have cleared the IK interrupt status register so that the IK 320 can send an interrupt to the master.
Only then can the IK 320 place the message in the IK interrupt status register (16-bit word). The
interrupt request line is selected with jumper J1 (possible lines: -IRQ1 to—IRQ7). The IK 320
stores an interrupt until the master performs an interrupt acknowledge cycle. If a valid IACK cycle
is recognized, the IK 320 outputs the vector number (= switch setting of DIP switch Sl) as a code
for the card and clears the interrupt. The master can read the IK interrupt status register of the IK
320 in the interrupt service. Finally, the master must clear the IK interrupt status register to allow
the IK 320 to output new interrupts.

Jumper 1: Interrupt request line
1 -IRQ1

-IRQ2
-IRQ3*
-IRQ4
-IRQ5
-IRQ6
7 -IRQ7

* factory-installed
Note: No jumper = Interrupt inhibited.

||| WIN

13

Jumper 2: Interrupt acknowledge line
1 -INT1

-INT2
-INT3 *
-INT4
-INTS
-INT6

7 -INT7

* factory-installed
Note: The interrupt acknowledge line must correspond to the interrupt request line.

[0 Il IE=N R CVN I V)

5.4.2 From the Master to the IK 320

The master writes the desired function number in parameter P81. Then the master generates an
interrupt (ADO cycle) by writing the interrupt address to address space A16 on the 1K 320. The IK
320 detects the interrupt, branches according to the entered function number and executes the
function.

Jumper 3:

Defines whether the card generates a DATCK pulse during an ADO (see also “8.1.5 VMEbus
Direct Latching within One Group”).

Jumper open: No DATCK

Jumper closed: DATCK is generated

5.5 Switch Settings (Example)
The entire system contains a total of five IK 320s divided into three groups:

Group 1: 2 * 1K 320
Group 2: 2 * K 320
Group 3: 1*1K 320
DIP switch Sl
Group No. Switch Address space Interrupt Common latching
S8 - S1 A16
Group 1 1 1010.0001 $A000-$BFFF $A002 $A000
2 1010.0010 $A000-$BFFF $A004 $A000
Group 2 3 1100.0001 $C000-$DFFF $C002 $C000
4 1100.0010 $C000-$DFFF $C004 $C000
Group 3 5 1110.0001 $EOQ00-$FFFF $E002 $E000
DIP switch SII:
Group No. Switch S8 - S1 Address space A24
Group 1 1 1000.0000 $E00000-$EO3FFF
2 1000.0001 $E04000-$E07FFF
Group 2 3 1100.0001 $F04000-$FO7FFF
4 1100.0010 $F08000-$FOBFFF
Group 3 5 1110.0001 $F84000-$F87FFF
Note:

Table entry “1"” means the switch is set to “OFF.” For address formation, the OFF setting means
that the address bit has the value 1 (logic level = 5V).

14

6.1 Data

Data, Parameters, and Data Transfer

Data is exchanged between the master and IK 320 through a common RAM. Interrupts and
markers are used to coordinate the transfer. The common RAM is subdivided into the two
functional groups Data and Parameters.

Access to the data area is coordinated with transfer markers: when the corresponding transfer
marker is $00, the IK 320 can write; if it is $01, the master can read. The transfer markers are
cleared in POST (Power On Self Test). If the IK 320 encounters a set marker while writing, an

error message is sent to the master and the write procedure is delayed until the master deletes

the marker.

BA+$00: Position value of axis 1

Size: 6 bytes, Motorola format (high byte first)

A 48-bit number is transmitted. The upper 32 bits contain the count value and the lower 16 bits
the interpolation value. Since the interpolation value requires only 12 bits, the bottom 4 bits are
not used.

BA+$06: Status of axis 1

Size: 1 byte

Bit Contents =0 Contents = 1

0 No signal compensation Signal compensation

1 Reserved

2 Stopped Started

3 OK Signal amplitude too low

4 OK Frequency exceeded

5 - Wiait for REF

6 Reserved

7 - Compensation is being
calculated

The status is updated with each measured value interrogation.

Meanings of the individual bits:

Bit 0:

Bit 2:

Bit 3:

Bit 4:

Bit 5:

Bit 7:

0: The signal was not compensated during the most recent measured value
interrogation, since:
The position lies outside of the compensated range.
P06 of this axis is not switched on.
There are no valid compensation values in the memory.
The axis has not yet traversed the reference mark (see Chapter 7.3).
: The signal was compensated during the most recent measured value interrogation.
: The axis has stopped; it has not yet traversed the reference mark(s).
: The axis is started; the bit is set after the referencing function (function number 08)
as been called and the reference marks have been traversed
: The signal amplitude was OK during the most recent measured value interrogation.
: The signal amplitude was too small during the last measured value interrogation.
: The frequency of the encoder signal did not exceed permissible values.
: The frequency of the encoder signal exceeded permissible values.
: The axis is not in the “Waiting for reference mark" status.
: The axis is in the "Waiting for reference mark" status; the bit is set
after function call 08 and reset when the reference mark is traversed.
The bit is effective only during the compensation run.
0: The compensation run calculation has not yet started, or it is finished.
1: The compensation run is being calculated (see Chapter 7.4).

OO0 0T O e e

15

BA+$07: Transfer marker of axis 1
Size: 1 byte

Transfer marker = $00: IK 320 can write
Transfer marker = $01: Master can read

BA+$08: Position value of axis 2

Size: 6 bytes, Motorola format (high byte first).

A 48-bit number is transmitted. The upper 32 bits contain the count value and the lower 16 bits
the interpolation value. Since the interpolation value requires only 12 bits, the bottom 4 bits are
not used.

BA+$0E: Status of axis 2

Size: 1 byte

Bit Contents =0 Contents =1

0 No signal compensation Signal compensation

1 Reserved

2 Stopped Started

3 OK Signal amplitude too low

4 OK Frequency exceeded

5 - Wait for REF

6 Reserved

7 - Compensation is being
calculated

The status is updated with each measured value interrogation.
Meanings of the individual bits: see description BA+$06: Status of axis 1

BA+$0F: Transfer marker of axis 2
Size: 1 byte

Transfer marker = $00: IK 320 can write
Transfer marker = $01: Master can read

BA+$10: Common position value of combined axes 1 and 2

Size: 6 bytes, Motorola format (high byte first)

A 48-bit number is transmitted. The upper 32 bits contain the count value and the lower 16 bits
the interpolation value. Since the interpolation value requires only 12 bits, the bottom 4 bits are
not used.

BA+$16: Status for common position value of combined axes 1 and 2
Size: 1 byte
Reserved, not used

BA+$17: Transfer marker for common position value of combined axes 1 and 2
Size: 1 byte

BA+$18: IK interrupt status

Size: word

When the IK 320 sends the master an interrupt, the cause of the interrupt is shown in the
interrupt status word. The master must read and then delete the status word in the interrupt
service routine before the 1K 320 can output a new interrupt.

$0000

$01xx

$01xx

$0O3xx

$04xx

$05xx

$06xx

$07xx

$08xx

Non-initialized interrupt

Position value X1 was written: Lower byte request source:

XX =

$01: -IK1, external latching pulse

$03: Synchronous latch command via VMEbus

$04: —F1, external function input

$05: —F2, external function input

$06: Interrupt master (latching through software, function no. 1)

Position value X2 was written: Lower byte request source:

XX =

$02: -IK2, external latching pulse

$03: Synchronous latch command via VMEbus

$04: —F1, external function input

$05: —F2, external function input

$06: Interrupt master (latching through software, function no. 2)

Combined position value from X1 and X2 was written:

Lower byte = request source

XX =

$01: -IK1, external latching pulse

$03: Synchronous latch command via VMEbus

$04: —F1, external function input

$05: —F2, external function input

$06: Interrupt master (latching through software, function no. 3)

Error during latching: no latch signal: Lower byte = axis
XX =

$01: Axis 1

$02: Axis 2

Error during latching: double latch: Lower byte = axis
XX =

$01: Axis 1

$02: Axis 2

Position value cannot be written, since transfer marker set
Lower byte = axis

XX =

$01: Axis 1

$02: Axis 2

$03: Combined axes 1 and 2

POST (Power On Self Test) concluded, Lower byte: error status
XX =

$00: no error

Bit 0: CRC error compensation values 1

Bit 1: CRC error compensation values 2

Bit 2: Parameter error (see setting parameters)

Bit 3: CRC error EPROM

Bit 4: Checksum error EPROM 1

Bit 5: Checksum error EPROM 2

Bit 6: Hardware error

Reference mark was traversed in axis 1

XX =

$00: no error

$01: Distance-coded reference marks: incorrect spacing

17

18

$09xx

$OAXX

$OBxx

$OCxx

$02: Error in counter module:

Either traverse another reference mark and then call

the referencing run function again, or

reset the IK 320 (RESET).

This error occurs only if you interrupt or restart

the referencing run with distance-coded reference marks

after traversing the first reference mark.

$03: Abort by user

Reference mark was traversed in axis 2

XX =

$00: No error

$01: Distance-coded reference marks: incorrect spacing

$02: Error in counter module:
Either traverse another reference mark and then call
the referencing run function again, or
reset the IK 320 (RESET).
This error occurs only if you interrupt or restart
the referencing run with distance-coded reference marks
after traversing the first reference mark.

$03: Abort by user

Parameters were updated

XX =

$00: Parameters were transferred unchanged

$01: Parameters contained errors; faulty parameters are overwritten with default
values, which are also written in the common RAM. The number of the
incorrect parameter can be found in the VME RAM in address BA+0xEA
(see page 22).

$02: Error with parameter for rotary axis, P05 (signal periods) = 0 or
incorrect value for P04 (REF spacing)

Compensation run for axis 1 completed. Lower byte = message
XX =

$00: OK

$01: Axis has no absolute reference (no REF)

$02: Speed error

$03: Wrong position (only with linear axis)

$04: Wrong direction

$05: Error within one scanning period, drive may be irregular
$06: Calculation error during compensation run

$07: Violation of internal memory area

$08: Wrong number of measuring interrupts, drive may be irregular
$03: Compensation run canceled by user

$10: Compensation run completed, axis drive can be stopped

Compensation run for axis 2 completed. Lower byte = message
XX =

$00: OK

$01: Axis has no absolute reference (no REF)

$02: Speed error

$03: Wrong position (only with linear axis)

$04: Wrong direction

$05: Error within one scanning period, drive may be irregular
$06: Calculation error during compensation run

$07: Violation of internal memory area

$08: Wrong number of measuring interrupts, drive may be irregular
$03: Compensation run canceled by user

$10: Compensation run completed, axis drive can be stopped

SOExx Error in background test for reference marks: wrong spacing
XX =
$01: Axis 1
$02: Axis 2
At each distance-coded reference mark the proper spacing is
checked in the background.

$OFxx CRC and checksum error. Lower byte: error code
XX =
$01: EPROM
$02: Compensation values 1
$03: Compensation values 2

$10xx Preset set via VMEbus. Lower byte: Axis
XX =
$01: Axis 1
$02: Axis 2
$03: Combined axes 1 and 2

$11xx Preset set via external function
XX =
Lower byte, lower nibble: axis
$.1: Axis 1
$.2: Axis 2
$.3: Combined axes 1 and 2
Lower byte, higher nibble: source
$0.: Function 1
$1.: Function 2

$19xx Axis 1, start without REF
XX =
$01: Axis is not started (hardware may be defective)
$02: 2. IK 320 waits for the 2nd reference mark being traversed”

$1Axx Axis 2, start without REF
XX =
$01: Axis is not started (hardware may be defective)
$02: IK 320 waits for the 2nd reference mark being traversed”

$1Bxx Axes 1 + 2, start without REF
XX =
Bit 0 = 1: Axis 1 is not started (hardware may be defective)
Bit 1 = 1: Axis 1, IK 320 waits for the 2nd reference mark being traversed”
Bit 4 = 1: Axis 2 is not started (hardware may be defective)
Bit 5 = 1: Axis 2, IK 320 waits for the 2nd reference mark being traversed”
Bits 2, 3, 6, 7 have no meaning.

"This IK 320 status may occur when you interrupt or cancel the referencing run with distance-
coded reference marks after traversing the first reference mark. The error is corrected by
traversing another reference mark or by a RESET on the IK 320.

20

$20xx

Compensation values for axis 1 read

XX =

$00: 0K

$01: No valid compensation values in the memory
$02: Incorrect compensation point number

$21xx Compensation values for axis 1 written
XX =
$00: 0K
$01: BCC error in transmission
$02: Incorrect compensation point number
$03: Incorrect axis
$22xx Compensation values for axis 2 read
XX =
$00: 0K
$01: No valid compensation values in the memory
$02: Incorrect compensation point number
$23xx Compensation value for axis 2 written
XX =
$00: 0K
$01: BCC error in transmission
$02: Incorrect compensation point number
$03: Incorrect axis
$FDxx Internal stack error
XX =
$01: Stack main program incorrect
$02: Memory area for stack is exceeded
$FEXx Hardware error (non-used CPU exception has occurred)
$FFxx Command not recognized. Lower byte: command (call of a non-existent function
number)
Note:

If the card reports with the interrupt status $FDxx or $Fexx, this means that there is an internal
error in the card. The IK 320 performs a local software RESET. Afterwards the card must be
reinitialized (parameters, POST, REF run).

BA+$1A: CRC sum EPROM NOML

Size: word
Set in POST.

BA+$1C: CRC sum EPROM ACTL
Size: word
Set in POST.

BA+$1E: Checksum EPROM 1 NOML
Size: long word
Set in POST.

BA+$22: Checksum EPROM 1 ACTL
Size: long word
Set in POST.

BA+$26: Checksum EPROM 2 NOML
Size: long word
Set in POST.

BA+$2A: Checksum EPROM 2 ACTL
Size: long word
Set in POST.

BA+$2E: Hardware version
Size: word
Set in POST.

BA+$30: Software version
Size: 12 bytes, string
Set in POST.

BA+$3C: System status 1
Size: byte
Reserved, required only internally.

BA+$3D: System status 2
Size: byte
Reserved, required only internally.

BA+$3E: Current preset for axis 1
Size: 3 words

BA+$44: Current preset for axis 2
Size: 3 words

BA+$4A: Current preset for combined axes 1 and 2
Size: 3 words

Note:

The current preset is the value that was calculated during PRESET setting (externally or through
VMEbus) and taken into account during the position value determination (see “8.2 Calculating the
Position Value”).

BA+$50 —- BA+$6F: Data area for reading compensation value
Size: 16 words

Word 0: Number of compensation point

Words 1 to 8: Compensation values

Word 9: BCC sum via words 0-8

Words 10 to 15: Reserved

BA+$70 — BA+$8F: Data area for writing
Size: 16 words

Word 0: Number of compensation point
Words 1 to 8: Compensation values

Word 9: BCC sum via words 0-8

Words 10 to 15: Reserved

BA+$90: CRC sum compensation data for axis 1
Size: word

BA+$92: CRC sum compensation data for axis 2
Size: word

BA+$94 - BA+$E9: free memory area

21

22

BA+$EA: Number of incorrect parameters

Size: word

If POST or the Transfer parameter function reports an incorrect value, the number of the incorrect
parameter can be taken from this memory area. In addition, the following numbers indicate the
following errors:

100: Spacing between the reference marks (P04.x) is greater than the signal periods (P05.x)

101: Rotary axis (P02.x > 1) and signal periods = 0 (P05.x)

102: Distance-coded reference marks (P04.x is not equal to 0) and P19 is not equal to 0

BA+$EC (32 bits): Signal period counter X1
Size: long word

BA+$FO0: Trigger status X1

Size: word

The trigger status indicates the level of the 90° trigger signal at the time of latching.
0x0000: Level is LOW

0x0001: Level is HIGH

BA+$F2 (32 bits): Signal period counter X2
Size: long word

BA+$F6: Trigger status X2
Size: word
For description, see above.

BA+$F8: Encoder input for axis 1: Analog value of 0 degree signal
Size: word

BA+$FA: Encoder input for axis 1: Analog value of 90 degree signal
Size: word

BA+$FC: Encoder input for axis 2: Analog value of 0 degree signal
Size: word

BA+$FE: Encoder input for axis 2: Analog value of 90 degree signal
Size: word

Note:

In order to determine the peak-to-peak value of the encoder current or voltage, the maximum and
minimum values must be captured. The peak-to-peak values can then be calculated using the
input amplification factors of the IK 320.

Amplification of the encoder input signals:

IK 320 A: 540 mV/uA

IK 320.1 A: 301 mV/uA

IK 320 V: Voltage amplification factor = 5.84

The analog values are rewritten only when a new measured value is interrogated.

Format: 14 bits, signed, left-aligned, bit 0 and bit 1 always at 0

Significance: One increment corresponds to 0.61 mV

Example: $4000 corresponds to 4096 x 0.61 mV = 2.499 volts

6.2 Parameters

Access to the parameter area is coordinated by way of interrupt: generally the master can always
write to the parameter range. However, the IK 320 only reads the range when it is requested to
do so. From this point until acknowledgment, the master is forbidden to write to the parameter
range. Parameter P81 (Master Interrupt Functions) has a special status. This parameter is always
read by the IK 320 after a master interrupt.

P01.1: Counting direction for axis 1

P01.2: Counting direction for axis 2

P01.3: Parameter is without meaning

Address: BA+$102, BA+$103, BA+$104

Valid values: 0, 1

Size: byte

0: normal, 1: inverse

In the setting inverse the position value to be output will be inverted.

P02.1: Axis definition for axis 1

P02.2: Axis definition for axis 2

P02.3: Axis definition for combined axes 1 and 2

Address: BA+$106, BA+$107, BA+$108

Valid values: 1, 2, 3, 4

Size: byte

1: linear, 2: angle 0° ... 360°, 3: angle + =, 4: angle + 180°

In the Angle setting, the position calculation is reduced to the position within one revolution, as is
the assignment of compensation values.

P03: Number of bits for subdivision

Address: BA+$10A

Valid values: 0 — 16

Size: word

Internally, 16-bit subdivision is used. Before output to VMEbus the value is rounded off according
to the indicated number of bits; the excess bits are deleted.

P04.1: Reference mark spacing for axis 1

P04.2: Reference mark spacing for axis 2

Address: BA+$10C, BA+$10E

Valid values: 0 and any even values from 64 to 8192

Size: word

Value = Basic spacing for distance-coded reference marks in signal periods;
0 = one reference mark or reference marks that are evenly spaced

P05.1: Signal periods for rotary axis 1

P05.2: Signal periods for rotary axis 2

P05.3: Signal periods for combined rotary axes 1 and 2
Address: BA+$110 (-$113), BA+$114 (-$117), BA+$118 (-$11B)
Valid values: any

Size: long word

Value = encoder signal periods per revolution.

P06.1: Compensation on/off for axis 1

P06.2: Compensation on/off for axis 2

Address: BA+$11C, BA+$11D

Valid values: 0, 1

Size: byte

0: Compensation off

1: Compensation on

P06 is significant only for measured value interrogation. Interrogation without compensation is
faster.

23

24

P07.1: Compensation value range for start in axis 1

P07.2: Compensation value range for start in axis 2

Address: BA+$11E (-$121), BA+$122 (-$125)

Valid values: any

Size: long word

Absolute position in signal periods (without interpolation) for the compensated range.

P08.1: Number of compensation values for axis 1
P08.2: Number of compensation values for axis 2
Address: BA+$126 (-$127), BA+$128 (-$129)

Valid values: 1 — 4096

Size: word

Value = Number of compensation values

P09.1: Interval of compensation points for axis 1

P09.2: Interval of compensation points for axis 2

Address: BA+$12A (-$12B) , BA+$12C (-$12D)

Valid values: all except zero

Size: word

Value = Number of signal periods between compensation points

P10: Inhibit position value call for specific axes

Only output to the VMEbus is disabled.

Address: BA+$12E

Valid values: 0-3; 16 - 19

Size: byte

Bit O: Disable transfer of value for axis 1 on the VMEbus

Bit 1: Disable transfer of value for axis 2 on the VMEbus

Bit 2: Reserved

Bit 3: Reserved

Bit 4: Disable external direct latching (with —IK1 / -IK2)

If, for example, the position values are interrogated through function number 03 (interrogation of
combined axes), the card replies for P10 = 00 with the position values of each of the two axes and
the position value of the combined axes, using an interrupt for each value: the master has to
process 3 interrupts. If, however, only the combined position value is desired, the transmission of
the individual axes can be disabled with P10 = 3 so that only one reply interrupt need be
processed.

With function 01 (measured value interrogation of axis 1) and P10 = 01 there is no reply. P10 is
effective with all other latching sources as well.

P19.1: Reserved for customer-specific use
P19.2: Reserved for customer-specific use
Address: BA+$130 (-$133), BA+$134 (-$137)
Size: long word

Value must be set to 0!

P21: Axis combination
Address: BA+$138
Valid values: 0 - 3

Size: byte

0: no axis combination common value is not output.
1: X1 + X2 common value is output.

2: X1 -X2 common value is output.

3: (X1 +X2)/2 common value is output

The result of the combination is stored in the “common position value” data range (see “6.1
Data”).

Note:
If the counting direction of an individual axis is inverted with parameter 01.x, the position of that
axis is calculated into the sum as a negative value.

P30.1 Direction (axis 1) and frequency (axes 1 and 2) of compensation run

Address: BA+$13A

Valid values: 1 -7

Size: byte

Bit 0, bit 1: Frequency (axes 1 and 2)

1:1.35 kHz - 65 Hz

2:650 Hz- 35 Hz

3:80 Hz-5Hz

Bit 2: Direction (axis 1)

0: positive

1: negative

Parameter P30.1 sets the frequency range for the compensation run for both axes. The 5-V
power supply must be interrupted to set another frequency range (a RESET alone is not enough!).
Then the correct value must be in P30.1 before the first POST to ensure that the corresponding
frequency range is set. If only the direction bit is changed (bit 2), a parameter is transferred as
usual (P81, function number $0A).

It is best to select a frequency range as close as possible to the middle of one of the 3 ranges. If
the frequency range is exited during a compensation run, the 1K 320 aborts the compensation run
and outputs an error message.

P30.2 Direction of compensation run for axis 2

Address: BA+13B

Valid values: 0, 4

Size: byte

Bit 2: Direction for axis 2

0: positive

1: negative

P70.1: Value for external setting of axis 1

P70.2: Value for external setting of axis 2

P70.3: Value for external setting of combined axes 1 and 2

Address: BA+$13C (-$141), BA+$142 (-$147), BA+$148 (-$14D)

Valid values: any

Size: 3 words

The set value is used as a display value with external setting through the function inputs —-F1, -F2;
the corresponding function must be preset in P80.1 or P80.2. The card internally calculates a
PRESET value that is added to the count in order to arrive at the desired value in the display. This
makes it possible, for example, to reset to zero at any point along the scale. The calculated preset
value is displayed in the status area (see “6.1 Data).

P71.1: Value for VMEbus setting for axis 1

P71.2: Value for VMEbus setting for axis 2

P71.3: Value for VMEbus setting for combined axes 1 and 2

Address: BA+$14E (-$153), BA+$154 (-$159), BA+$15A (-$15F)

Valid values: any

Size: 3 words

The values have the same function as P70 except that the PRESET setting is started through a
VMEbus function call (function numbers 04,05,06).

P72.1: Axis offset for axis 1

P72.2: Axis offset for axis 2

P72.3: Axis offset for combined axes 1 and 2

Address: BA+$160 (-$165), BA+$166 (-$16B), BA+$16C (-$171)

Valid values: any

Size: 3 words

The set value is added unchanged into the actual value. With this parameter a position value shift
is possible. The value is taken into account as soon as it is stored in local RAM with parameter
input (P81, function number $0A). After RESET, P72 = 0.

P72 has no effect on the compensation value configuration.

25

26

P80.1: External function -F1
P80.2: External function -F2
Address: BA+$172, BA+$173
Valid values: 0 — 6

Size: byte
$00:
$01:
$02:
$03:

$04:
$05:
$06:

No function

Read axis 1: latching, calculation, and provision of the position value
Read axis 2: latching, calculation, and provision of the position value
Read combined axes 1 and 2: latching, calculation, and provision of
the position values

Preset axis 1 with value from parameter P70.1

Preset axis 2 with value from parameter P70.2

Preset combined axes 1 and 2 with value from P70.3

Active edges at the —Fl or —F2 input of socket X41 generate an interrupt on the IK320. The latter
carries out the function set in parameter P80.1 (or P80.2). When the function is completed or in
case of an error, a message is returned to the master.

P81: Master interrupt function
Address: BA+$100
Valid values: 01 — $0C, $18, $19 - $1B, $20 - $23

Size: word

$0000:
$0001:
$0002:
$0003:

$0004:
$0005:
$0006:
$0007:
$0008:
$0009:
$000A:
$000B:
$000C:
$0018:
$0019:
$001A:
$0018B:
$0020:
$0021:
$0022:
$0023:

No function

Read axis 1: latching, calculation, and provision of the position value
Read axis 2: latching, calculation, and provision of the position value
Read combined axes 1 and 2: latching, calculation, and provision of
the position values

Preset axis 1 with value from parameter P70.1

Preset axis 2 with value from parameter P70.2

Preset combined axes 1 and 2 with value from P70.3

Start POST

Cross over reference mark in axis 1

Cross over reference mark in axis 2

Update parameters

Compensation run in axis 1

Compensation run in axis 2

Move axis 1 and axis 2 over reference marks

Axis 1, start without REF

Axis 2, start without REF

Axes 1+2, start without REF

Read compensation values for axis 1

Write compensation values for axis 1

Read compensation values for axis 2

Write compensation values for axis 2

If an interrupt is generated by the master on the IK 320 (writing the interrupt address in address
space A16), the IK 320 performs the function set in parameter P81. When the function is
completed or if an error occurs, a message is sent to the master.

Functions

7.1 Interruptibility of the Functions

The following table contains the interruptible and non-interruptible functions:

Function or
function number

Meaning

Interruptibility

Only hard latches
-PULSE1, —-PULSE2,
X41, pins 4 and 5

External direct
latching

Mutually interruptible. Otherwise
interruptible only by the master interrupt
with function number $0A. An interrupt of
the same source is disabled until the
inactive level is detected at the input pin.*

Only hard latches, —F1,
—F2, X41, pins 6 and 7

External indirect
latching

Interruptible only through external direct
latching or by the master interrupt with
function number $0A. An interrupt of the
same source is disabled until the inactive
level is detected at the input pin.*

$01 Soft latch X1 Interruptible only through hard latches
$02 Soft latch X2 Interruptible only through hard latches
$03 Soft latch X1/X2 Interruptible only through hard latches
$04 Preset X1 Not interruptible
$05 Preset X2 Not interruptible
$06 Preset X1/X2 Not interruptible
$07 POST Not interruptible
$08 REF X1 Interruptible for hard latches, soft latches
and REF X2; abortable if axis is in the
status WAIT FOR REF
$09 REF X2 Interruptible for hard latches, soft latches
and REF X1; abortable if axis is in the
status WAIT FOR REF
$0A Set parameter Not interruptible
$0B Compensation X1 Not interruptible; abortable
$0C Compensation X2 Not interruptible; abortable
$18 REF X1/X2 After initialization interruptible for hard
latches and soft latches; abortable
$19 Axis 1 Not interruptible
Start without REF
$1A Axis 2 Not interruptible
Start without REF
$1B Axes 1+2 Not interruptible
Start without REF
$20 Upload X1 Not interruptible
$21 Download X1 Not interruptible
$22 Upload X2 Not interruptible
$23 Download X2 Not interruptible

*Interruptibility with master interrupt and function number $0A is required to make a disable of the external

functions via "Set parameter" possible.

27

Explanation of terms

Hard latches: Latching externally directly (via X41, -PULSE1/2, -CONTACT1/2), latching externally
indirectly (via X41, —=F1/2), VMEbus directly (latching via SYNCHRONOUS address)

Soft latches: VMEbus indirectly (function numbers $01, $02, $03)

Not interruptible: No new function calls are accepted until the IK 320 has completed a running
function and has concluded it with a reply interrupt.

Abortable: Function can be aborted with function number 0 and master interrupt.

7.2 Power On Self Test (POST)

After switch-on, the master must start an initializing procedure on the IK 320. This is done by
calling the POST, which takes about four seconds to run.

It is not possible for the 1K 320 to access the common RAM before this initializing procedure has
been performed; nor will it react to any other function call. The master can read and write to the
common RAM as needed and can now, for example, set the parameters for the card.

When the POST is called the parameters are automatically transferred into the common RAM and
checked for valid values. If there are incorrect values, the default values are set and an error
message is generated. The default values are also written into the common RAM. If an error
occurs, the number of the parameter concerned is written into the VME-RAM (BA+$EA).

Important:

After POWER ON, before the first POST call, the correct value must be written into parameter
P30.1, which sets the frequency range of the compensation run, so that the hardware for the
compensation run is initialized correctly.

While the POST is running, the control of the VME-RAM is handed over to the IK 320, and the
master must not access the common RAM until the IK 320 has sent the master a reply interrupt.

During the POST the IK 320 performs the following routines for initializing and testing the
hardware:

e Checksum and CRC sum test of the EPROM

e CRC sum test of the compensation value memory

e Test of local RAM

e Test of VME-RAM

o Test of BERR time-out

e Test of counter components for axes 1 and 2, counter components are stopped after POST

The 1K 320 acknowledges with an interrupt, which the card sends to the master. In the interrupt
status word the high byte contains the value $07 (= POST completed) and the low byte contains
the error message (e.g. $00 = no error. See “6.1 Data,” IK interrupt status).

Calling the POST:

The master erases the IK interrupt status byte in order to give the IK 320 the possibility of replying
to the master.

The master then writes the value $07 in P81 Master interrupt function and causes a master
interrupt on the IK 320 (see “5.4.2 From Master to IK 320").

7.3 Traversing the Reference Marks

28

With incremental encoders, the correlation between axis position and display value is lost after a
power failure. After a power failure, traversing reference marks re-establishes the reference to the
axis position. HEIDENHAIN encoders have one or more distance-coded reference marks. In
parameter P04 you define which reference marks your encoder has.

Procedure for one reference mark:

The master generates interrupt function $08 (traversing the reference mark for axis 1), $09
(traversing the reference mark for axis 2) or $18 (traversing both reference marks).

The IK 320 performs the following functions for the selected axis:

e Counter stop: the counter is stopped and the status is set in the register “status for
axis 1.”

e Counter reset: the counter is set to 0.

e Counter start with reference pulse: The counter starts with the next traversed reference mark.
The counter status register is continually updated, i.e. the current states are stored in the data
registers “status for axis 1" (BA+3$06) or “status for axis 2" (BA+$0E) (see “6.1 Data").

After the reply interrupt the master reads the interrupt status register and recognizes through IK

interrupt status $0800 or. $0900 that the reference mark was traversed. Position value

interrogations during referencing always reply with the position value 0, i.e. the corresponding axis
is not yet started.

Procedure for distance-coded reference marks:

In the case of encoders with distance-coded reference marks, reference marks are located at
fixed distances on the entire measurement path. Between two of these reference marks there is
a third, whose distance from the other two varies in such a way that each distance is a multiple of
the grating period and occurs only once over the entire measurement path. This enables the IK
320 to re-establish the correlation between axis position and display value after a power failure
simply by traversing two reference marks.

For a basic distance of 1000 signal periods, the following distribution results for the reference
marks:

501 499 502 498 503 497
|
|
|
|

| |
| |
I I
0 501 1000 1502 2000 2503 3000

In parameter P04 you define the basic distance for the distance-coded reference marks in signal
periods. The master starts traversing the reference marks with the interrupt function $08
(traversing reference mark in axis 1), $09 (traversing reference mark in axis 2) or $18 (traversing
both reference marks).

The 1K 320 performs the following functions for the selected axis:

e The counter is stopped and set to 0.

e The counter is started with traversing of the first reference mark.

e With traversing of the second reference mark, the IK 320 stores the position value and thereby
determines the distance between the reference marks in increments. From this distance, the
IK 320 calculates the absolute position in relation to the first reference mark on the scale
(position “0" in the figure).

LIDA scale tapes with distance-coded reference marks, which are mounted on a circular band so
that the reference interval is irregular at the butt joint, are also evaluated by the IK 320. In this
case it is however necessary that the axis in PO2 be defined as a rotary axis in order for the
reference-mark evaluation at the butt joint to work.

Remark: Background tests (CRC sum EPROM, CRC sum compensation data, distances between
coded REF marks) are switched off as soon as an axis goes into the WAIT FOR REF status.

Aborting traverse of reference marks
You can abort reference mark traverse only with function number 0 and a master interrupt.

Starting the axes without traversing the reference marks
For applications that require a speed signal immediately after switch-on, the axes can also be
started without a referencing run.

The following interrupt functions are available for this purpose:
$19 (start axis 1 without REF),

$1A (start axis 2 without REF),

$1B (start axes 1+2 without REF).

29

7.4 Compensation Run to Compensate for Deviations in the Encoder Signals

30

The 1K 320 can compensate for deviations in the encoder signals which are determined in a
compensation run. A card can perform a compensation run for only one axis at a time. However, it
is possible to start several cards at the same time for a compensation run. When both axes of a
card are used, two separate compensation runs must be performed. The compensation run can
go in the positive or negative direction (parameter 30.x, bit 2).

Parameters P07.x, P08.x, P09.x and P30.x must be set for each axis. P06.x plays no part in the
compensation run.

Parameter P0O7.x indicates the smallest value of the compensation range: when the compensation
run is in the positive direction it is the first value that is compensated; in negative direction it is the
last value. P08.x indicates the number of compensation points. P09.x indicates the spacing of
compensation points in terms of signal periods.

Parameters P07.x, P08.x and P09.x determine the compensation value range. Parameter P30.1
selects the speed interval for traversing the compensation value range. This interval applies for
both axes. If the chosen speed is not maintained, the compensation run will be aborted and an
error message results.

Important:

Parameters P07.x,P08.x and P09.x must not be changed after a compensation run. To do so
would invalidate the assignment of compensation values to positions while interrogating meas-
ured values. Parameters P70.x, P71.x and P72.x, however, do not affect this assignment.

Operating sequence of the compensation run:

The axis must be active (see "7.3 Traversing the Reference Marks”). On linear axes, the position
is checked before the actual beginning of the compensation run. It must be at least ten signal
periods before the first value of the compensation run in accordance with the selected scanning
direction.

On rotary axes there is no position checking: if the distance to the compensation range is not at
least ten signal periods, the start of the compensation run is postponed until the next revolution.
When the function is called, the axis can be stationary. It must then move in the proper direction
and be at the correct speed when it reaches the compensation range.

If the axis moves in the wrong direction, the compensation run is aborted after 100 signal periods
and the error status is set.

After the compensation range has been reached, the card begins scanning the encoder signals.
This requires its complete processing capability, which is why the LED stops blinking (see “4.2
Monitor LED"). If an error occurs during scanning, the function is aborted and the error status is
set. After scanning is completed, the card transmits the “compensation run completed” interrupt
and the axis can be stopped. The LED starts blinking again and the card processes the scanning
values.

Note:

For 4096 compensation points, the calculation of compensation values takes approximately 3
minutes and 30 seconds. During this time, bit 7 is set in the status byte of the respective axis (see
"6.1 Data").

Errors may occur during calculation, for example from an uneven drive. In this case the calculation
is aborted and the error status is set. If the compensation run and calculation are completed
without error, the reply interrupt “compensation run OK" is transmitted.

Caution:
Acceleration should be kept as low and linear as possible during the compensation run.

Interrupting a compensation run
You can abort the compensation run only with function number 0 and a master interrupt.

7.5 Reading and Writing Compensation Values

A complete block of compensation values always contains P0O8x + 2 compensation points, i.e.
when the values are being read or written the compensation points from 0 to PO8x+1 must
always be read or written. In the common RAM there are two data ranges reserved: one for
reading (BA+$50 to BA+$6F) and one for writing (BA+$70 to BA+$8F). For a compensation point
to be transmitted, the compensation point number, 8 compensation coefficients (K1 to K8) and
the BCC sum of the compensation point number and the 8 coefficients are necessary. These are
exclusively 16-bit data words.

The BCC sum is the result of an EXOR gating of the operands.

One coefficient pair contains the real and imaginary components of the respective vector of the
function.

K1/K2 = Coefficients of the fundamental oscillation of the error function

K3/K4 = Coefficients of the 2nd harmonic error function

K5/K6 = Coefficients of the 3rd harmonic error function

K7/K8 = Coefficients of the 4th harmonic error function

Function numbers:

$20: Reading compensation values X1
$21: Writing compensation values X1
$22: Reading compensation values X2
$23: Writing compensation values X2

Status of reply interrupt:
$20xx Compensation values for axis 1 read
XX =
$00: 0K
$01: No valid compensation values in the memory
$02: Incorrect compensation point number
$21xx Compensation values for axis 1 written
XX =
$00: 0K
$01: BCC error in transmission
$02: Incorrect compensation point number
$03: Incorrect axis
$22xx Compensation values for axis 2 read
XX =
$00: 0K
$01: No valid compensation values in the memory
$02: Incorrect compensation point number
$23xx Compensation value for axis 2 written
XX =
$00: 0K
$01: BCC error in transmission
$02: Incorrect compensation point number
$03: Incorrect axis

31

32

7.5.1 Reading Compensation Values

It is only possible to read values when the compensation data stored in the memory is valid.

You must write the compensation point number in the appropriate memory region of the common
RAM (BA+$50). Then the function number (e.g. $20 for X1) is written in P81 and a master
interrupt follows. The card writes the 8 coefficients for this compensation point in the common
RAM, calculates the BCC sum of the compensation point numbers and the 8 coefficients and
stores this in the common RAM (BA+$62). Then it answers with answer interrupt and status (e.g.
$2000 for error-free cycle). Now the user can check the BCC sum, and the compensation point
number together with the coefficients can be read and stored. In theory reading the compensation
points is possible in any order. It is recommended, however, to keep the order 0 to P08x+1, as
this order is necessary for the defining of the compensation value RAM (see 7.5.2).

In the common RAM the CRC sum can be read out via the compensation value RAM of an axis
(BA+$90 for X1, BA+$92 for X2, 16-bit values). This CRC sum can also be saved as a control
factor in a complete compensation value block of an axis, because the IK 320 must transmit the
same CRC sum after the writing of the compensation values. It is also advisable to keep the
corresponding parameter block.

7.5.2 Writing Compensation Values

When writing compensation values it is vital to keep the order of the compensation point numbers
from 0 to PO8x+1. The axis values can only be transmitted in succession. If the order is not kept, a
BCC error will occur and if the compensation point is defined for the other axis then the procedure
is aborted and must begin again with compensation point 0.

You write the compensation point number, the 8 coefficients and the BCC sum of the
compensation point number and the 8 coefficients in the common RAM (BA+$70 to $82). Then
the function number (e.g. $21 for X1) is written in P81 and a master interrupt follows. The card
checks the BCC sum of the coefficients, writes the 8 coefficients of this compensation point in
the temporary memory and answers with the corresponding interrupt and status (e.g. $2100 for
an error-free run). If all the necessary compensation points have been transmitted, the card writes
the values from the temporary memory into the actual compensation value memory range and
calculates again the CRC sum for this memory range. This CRC sum is also stored in the common
RAM (BA+%$90 for X1, BA+$92 for X2, 16-bit values). This sum must be the same as the CRC sum
that was transmitted when the compensation values were being read.

8.

Interrogating a Position Value

Interrogation of the position value is started by a latching procedure. The position value is
calculated, stored in the “data” range and an interrupt is sent to the master. Additionally, the
latching source of the measurement value is transferred in the interrupt status register.
Depending on the parameter setting and the type of interrogation (external or via VMEbus), the
card generates from zero to three reply interrupts (see P10, P21), which must all be processed
before the card is again ready for new function calls.

8.1 Latching the Position Value

The position value can be latched directly or indirectly.

Note:

In the case of direct latching, a local interrupt is generated on the 1K 320; in the case of indirect
latching, the latching signal is generated by software via the local CPU of the IK 320.
Consequently, different times result for latching the individual values.

The following latching methods are available:

e External direct: Signals —-PULSE1, -PULSE2, -CONTACT1, —-CONTACT2 in socket X41
(external functions).

e External indirect: Signals —F1, —F2 in socket X41 generate a local interrupt; latching by
software.

e VMEbus direct: Setting the synchronous latch address.

e VMEbus indirect: Generation of a local interrupt; latching by software.

e By traversing the reference marks: Traversing a reference mark starts a latching process.

e With timer: Latching with local time reference (needed only for compensation run).

Every local latch pulse is output at X41 pin 1 (-LOUT), regardless of the latching method or the

axis involved.

The current position values can only be interrogated if the reference marks have been traversed
after POST (see “7.3 Traversing Reference Marks").

8.1.1 Pin Layout, Connection for External Functions (X41)

Meaning of signal Designation Pin number
Latching via pulse for axis 1 —PULSE1 4
Latching via pulse for axis 2 —PULSE2 5
Latching via contact for axis 1 —CONTACT1 2
Latching via contact for axis 2 —CONTACT2 3
Latching via interrupt for axis 1 —F1 6
Latching via interrupt for axis 2 -F2 7
oV oV 8
oV oV 9
Output for latching pulse -LOUT 1

33

Signal levels:

Designation Min Max. Unit
UgH 3 15 V
UelL -05 1 V
lel 6 mA

The inputs are active LOW and are kept at HIGH level with internal pull-up resistors. Triggering is
possible with TTL standard, LS, ALS or CMOS components.

Time diagram

NN]
7

Encoder
signal

N
O
N

Counter
signal

> S

Latch
command
(external)

A
A

Latching
time point /
internal 2

Interrupt to t3
master (meas.
val. ready)

\

Signal Design Min. Max. Unit
Signal delay from encoder input to A/D converter or counter ty 14 us
Width of latch command te *
Latch signal delay 8] *
Instant of stored measuring signal relative to instant of ty 100 ns
storage

Measured value ready (per axis, compensated) 3 400 us
Measured value ready (per axis, uncompensated) t3 180 us

* different for the various sources

8.1.2 External, Direct Latching

With make contact of the signals -PULSE1, -PULSE2 or -CONTACT1, -CONTACT2 against 0V, a
latch signal is generated via hardware. The inputs —PULSE and -CONTACT differ in their time
response:

34

Pulse:

te>1.2 us
11<0.8 us

Contact:

te>7.0ms
11<4.5ms

Caution:
With an axis combination (P21) the latch pulse at input -PULSE1/CONTACT1 is applicable for
both axes. A pulse at -PULSE2/CONTACT?2 is not evaluated.

8.1.3 External, Indirect Latching through Interrupt

With make contact of the signals —F1 and —F2 against 0 V, a local interrupt is generated on the
card. The CPU performs the functions set in parameter P80.1 or P80.2; the parameter values $01,
$02, $03 generate a latch signal in the corresponding channels.

Time response F1, F2: te >25us
1 <10 us

8.1.4 VMEDbus Direct Latching

Latching can take place via the VMEbus by an address access in address space A16.
Time diagram

te = ADO access VME (ADDRESS ONLY access)

t1 <500ns from DSO/DS1

Timing:

Addresses 145 ns

-AS 115 ns
(-address strobe) # /2

8.1.5 VMEbus Direct Latching within One Group

A latching process is initiated simultaneously in all axes of this group (several cards) by an ADO
access to the group address of address space A16. Individual axes can be disabled with parameter
P10. Parameter P21 will be taken into account (axis combination). The higher-level processor must
carry out an ADO cycle, i.e. none of the cards returns a -DTACK signal.

.Y

N

Note:
If the VMEbus processor is not capable of performing an ADO, one possible solution is to insert
the jumper J3 in one of the cards in the group. This card will then return a -DTACK signal.

8.1.6 VMEDbus Direct Latching over Several Groups
If you wish to synchronously latch the position values of cards which are set to different group
addresses, proceed as follows:
e Connect the -LOUT outputs of the cards in the first group to the
—PULSE1 and —-PULSE2 inputs of the other cards.
e Store the position value of the cards of the first group with an ADO access to the group
address.
e The cards of the other groups will be synchronously latched via the -LOUT outputs.
Propagation time of latch pulse to -LOUT : < 10 ns

35

36

=
IK 320
- LOUT
F
— PULSE 1]
- PULSE 2 —
F
K320
- PULSE 1]
- PULSE 2 —

8.1.7 VMEbus Indirect Latching

A local interrupt on the 1K 320 is generated by an ADO access to the interrupt address of address
space A16. The CPU performs the function set in parameter P81: the functions $01, $02, $03
generate a latch signal in the corresponding axes.

8.2 Calculating the Position Value

The flowchart below shows how the IK 320 generates the measured value in increments.

X1 represents the measured value of the 1st axis and X2 the measured value of the 2nd axis.

Axis 1

Xy := internal counter value +
REF_value + (P19)

'

Interpolation and
compensation

Axis 2

Xy := internal counter value +
REF_value + (P19)

i

Interpolation and
compensation

% '

X1 = —X1

Negative counting direction:

X2 = —Xz

\

Xy :=Xq + preset + P72.1

Y

Linear and rotary axes

+/- 0

Negative counting direction:
X1 = —X1

Rotary axes 0° to 360°
and +/-180°:
X1 := (modulo 360°) X1

Negative counting direction:
X1 = —X1

Rotary axes +/-180°
If angle > 180°:
Xy 1= X; —360°

'

Measured value output

Negative counting direction:

— —

Axis combination (depends

on P21)

Xsum 1= Xq + Xp
or

Xsum =X =X
or

XSUM = (X1 + Xz)/z

Xsum =
Xsum + preset + P72.3

Rotary axes 0° to 360°
and +/-180°:
XSUl\/l := (modulo 360°) XSUI\/I

Rotary axes +/-180°

If angle > 180°
Xsum = Xsym — 360°

'

Measured value output

Y

Xy := Xy + preset + P72.2

Y

Linear and rotary axes

+/- 0

Negative counting direction:
Xz = _XZ

Rotary axes 0° to 360°
and +/-180°:
X2 := (modulo 360°) X2

Negative counting direction:
XZ = —Xz

Rotary axes +/-180°
If angle > 180°:
Xz = X2 —-360°

'

Measured value output

37

38

The REF value is the absolute value of the first traversed reference mark on encoders with
distance-coded reference marks. On encoders with only one reference mark the REF value = 0.

The preset is calculated as follows:
Preset = desired display value (P70/P71) - internal counter value — P72 - REF value

A value is calculated so that the value desired in parameters P70 or P71 appears at this location as
the position value. This makes it possible, for example, to set the display to zero at any location,
provided that before the preset calculation you define the value 0 as desired display value.

9. Programming

The programming of an IK 320 with two axes is shown in this description using a “BORLAND C”
example. The program was written and tested on an industrial computer (manufactured by
ROTEC, D-76411 Rastatt) with an INTEL 486 CPU (DOS Version 6.0), a VMEbus interface and
BORLAND C++ compiler (Version 4.0).

The following files on the floppy disk provided are used to adapt the ISA bus to the VMEbus:

e VMEROTEC.H and

e VMEINIT.C

The data and function definitions in these files are not explained in greater detail, since they do not
describe any functions of the IK 320.

The files
e |K320.H and
e [K320.C

contain the most important data and function definitions which you will need when working with
the 1K 320.

The files
e SAMPLE.H and
e SAMPLE.C

show a simple application with the functions from “IK320.C".

You can create an executable program by integrating the files

e VMEINIT.C
e [K320.C

e SAMPLE.C
ina “project.”

Essentially, a program for the IK 320 must perform the following functions:
e Initialize card

e Traverse reference points

e Display, store and evaluate position values

In addition, on commissioning compensation values must be entered to compensate for encoder
signal deviations. You must repeat the compensation run after:

e A failure of the “stand-by"” power supply or

e The replacement of an encoder or scanning head on an axis

The individual functions of the SAMPLE.C program are described below.

The heart of this example is the interrupt function NewlnterruptRoutine(). This function handles
all interrupt causes of the IK 320. The function Read-IK_Interrupt_Status() reads the IK interrupt
status (BA + $18). Evaluate_IK_Interrupt-Status() evaluates the interrupt origin.

Vmelnit()

Initializes the VMEbus. This function is adapted to the industrial computer manufactured by
ROTEC. You will have to write your own initialization function for the hardware you use.

39

Initlk320()

Initializes the IK 320. First the interrupt address of INT_NR is stored under
pOriginalinterruptVector. Then the new interrupt function NewlnterruptRoutine, which
handles all IK interrupts, is installed. Then this function sets the parameters via InitParams() and
performs the “Power On Self Test” (POST; VMEbus interrupt function $07). The POST has been
completed successfully if the IK 320 returns the status $0700.

DisplayMessage() and DisplayError()
Display messages and errors which the 1K 320 reports through the interrupt status.

TraverseOverReferencemark()

Activates the evaluation of the reference marks by means of the VMEbus interrupt function $0008
for axis 1 and $0009 for axis 2. Then you must traverse the axes over the reference marks. The IK
320 signals via interrupt status whether the reference marks have been crossed over: $0800 is
the status “Reference mark of axis 1 was traversed” and $0900 is the status “Reference mark of
axis 2 was traversed.”

DisplayPositionValue()

Displays the positions of the two axes 1 and 2 on the screen. The function calls
SynchroPosTrigger() for synchronous latching. The position value is determined in
Evaluate_IK_Interrupt_Status(). In the case of linear axes you must multiply this value by the
signal period (e.g. by 0.002 mm), to obtain a display in mm. For rotary axes, multiply by 360°/signal
periods per revolution.

CompensationRun()

Determines the compensation values to compensate for encoder signal deviations. The
compensation run is started with Masterlnterrupt() and the master interrupt function $0Bxx (axis
1) or $0Cxx (axis 2). Then you must move the axes at a speed which is as constant as possible.
The 1K 320 signals a successful compensation run via an interrupt with the status $0Bxx (axis 1)
and $0Cxx (axis 2).

CompensationOnOff()
Activates compensation of the encoder signals via parameter P0G6.

RestoreOldinterruptVector()
Before you exit the program, RestoreOldInterruptVector() re-installs the original interrupt address.

9.1 The Header File SAMPLE.H

40

DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany

Header File for SAMPLE.C

Vv 1.00
September 1995
__ */
/* ___
Address of the VME address space Al6 (DIP switch SI) and of the
VME address space A24 (DIP switch SII).
__ */
#define DIP_SWITCH_SI 0xAl
#define DIP_SWITCH_SII 0x80
/* __
Prototypes of functions
__ */

void MainMenu (void) ;

9.2 Program Example SAMPLE.C

e T SAMPLE. C-==== === === === mmmm—m o
DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany

Sample for IK 320
vV 1.00
September 1995

#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

#include <dos.h>

#include "vmerotec.h"//Header file for ROTEC VME interface
#include "ik320.h"

#include "sample.h"

unsigned short usIntervalOfCompPoints, usNumberOfCompPoints;

void main ()
{

clrscr();

//Initialize VME interface (ROTEC specific functions)
VmeInit () ;

//Initialize IK 320

InitIK320 (DIP_SWITCH_SI, DIP_SWITCH_SII);

//Display the main menu
MainMenu () ;
exit (0);

}//End of main

void MainMenu ()

{

char cCharacter;
_setcursortype (_NOCURSOR) ;

do
{
if (extucErrorCode)
{
DisplayError () ;
}

if (extucMessage)

{
DisplayMessage() ;

clrscr();
fflush(stdin) ;
printf("l: Traverse over Reference Mark axis 1\n");
printf ("2: Traverse over Reference Mark axis 2\n");
printf("3: Display Position Values\n");
printf("4: Compensation Run axis 1\n");
printf("5: Compensation Run axis 2\n");
("6

Compensation On/Off\n");

41

42

printf("0: End");

do
{

if (extucErrorCode)
{

DisplayError () ;

}

if (extucMessage)

{

DisplayMessage() ;
}
}

while (! (kbhit()));

cCharacter=getch() ;

switch (cCharacter)
{
case '1’:
TraverseOverReferenceMark (DIP_SWITCH_SI, DIP_SWITCH_SITI,
break;
case '2':
TraverseOverReferenceMark (DIP_SWITCH_SI, DIP_SWITCH_SIT,
break;
case ’'3’':
DisplayPositionValue (DIP_SWITCH_SI, DIP_SWITCH_SII);
break;
case ‘4':
clrscr();
fflush(stdin) ;
printf ("\nNumber of Compensation Points ");
scanf ("%d", &usNumberOfCompPoints) ;
fflush(stdin) ;
printf ("\nInterval of Compensation Points ");
scanf ("%d", &usIntervalOfCompPoints) ;
CompensationRun (DIP_SWITCH_SI, DIP_SWITCH_SII,1,0,
usNumberOfCompPoints,
usIntervalOfCompPoints, 1) ;
break;
case '5':
clrscr();
fflush(stdin) ;
printf ("\nNumber of Compensation Points ");
scanf ("%d", &usNumberOfCompPoints) ;
fflush(stdin) ;
printf ("\nInterval of Compensation Points ");
scanf ("%d", &usIntervalOfCompPoints) ;
CompensationRun (DIP_SWITCH_STI,
DIP_SWITCH_SII,2,0,usNumberOfCompPoints,
usIntervalOfCompPoints, 0) ;
break;
case '6':
CompensationOnOff (DIP_SWITCH_SI, DIP_SWITCH_SIT);
break;

}

while (cCharacter!='0") ;
//Set normal cursor again
_setcursortype (_NORMALCURSOR) ;

1);

2);

//InitIK320() sets a new interrupt vector. Therefore the old

//interrupt vector has to be reinstalled.
RestoreOldInterruptVector () ;
}//End of MainMenu

9.3 The Header File IK320.H

DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany
Header File for the Driver Unit IK320.C

VvV 1.00
September 1995

#define SUBDIVISION 4096
#define IK_BASE_ADDRESS 0xC00000L
#define INTERPOLATION_BITS 12

/*The ROTEC VMEbus interface converts VME interrupts to DOS
interrupt IRQ15. The following defines are addresses of
the DOS interrupt controllers.*/
#define INTC1AO 0x20
#define INTC1lAl 0x21
#define INTC2A0 0xa0l
#define INTC2A1 Oxal
#define INT_NR 0x77 //Dos Interrupt IRQ15
#define INT_MASK ~0x80 //Interrupt mask IRQ15
#define EOI 0x20 //End of Interrupt command

Macro to switch VME to A24 memory space;
ROTEC specific code

#define SWITCH_VME_TO_A24_ADDRESS_SPACE (switch) outport (ADR_REG, \
(short) ((IK_BASE_ADDRESS + switch * 0x40001) >> 8) & OxFF80)

Macro to switch VME to Al6 memory space;
ROTEC specific code

#define SWITCH_VME_TO_Al6_ADDRESS_SPACE (switch) outport (ADR_REG, \
((((short) ((switch & O0xEO0) >> 5) * 0x2000) & 0x8000) >> 8) |0xFC00)

Macro to calculate the IK address.
The code <& OxFFFF) | 0x8000> is a ROTEC specific
address modification

#define CALCULATE_IK_ADDRESS (switch) \
(short) (((IK_BASE_ADDRESS + switch * 0x40001) & OxFFFF) | 0x8000)

Macro to calculate the IK group address.
The code <| 0x8000> is a ROTEC specific
address modification

#define CALCULATE_BAS_ADR_GROUP (switch) \
((short) ((switch & 0xEQ) >> 5) * 0x2000) | 0x8000

#define PAR_01_1 0x0102 //Counting direction axis 1
#define PAR_01_2 0x0103 //Counting direction axis 2
#define PAR_01_3 0x0104 //Counting direction for axis comb.

#define PAR_02_1 0x0106 //Definition axis 1

#define PAR_02_2 0x0107 //Definition axis 2

#define PAR_02_3 0x0108 //Definition for axis combination
#define PAR_03 0x010A //Bits of subdivision

#define PAR_04_1 0x010C //Ref. mark spacing axis 1
#define PAR_04_2 0x010E //Ref. mark spacing axis 2

43

44

#define
#define
#define

#define
#define

#define
#define

#define
#define

#define
#define

#define

#define
#define

#define

#define
#define

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define

#define

#define
#define

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define

#define
#define

#define
#define
#define
#define

PAR_05_1
PAR_05_2
PAR_05_3

PAR 06_1
PAR_06_2

PAR_07_1
PAR_07_2

PAR_08_1
PAR_08_2

PAR 09 1
PAR_09_2

PAR_10

PAR_19_1
PAR_19_2

PAR_21

PAR_30_1
PAR_30_2

PAR_70_1
PAR_70_2
PAR_70_3

PAR_71_1
PAR_71 2
PAR_71_3

PAR_72_1
PAR_72_2
PAR_72_3

PAR 80 1
PAR_80_2

PAR_81

POS_COMB_1
POS_COMB_2
POS_COMB_3
STAT_COMB
TM_COMB

INTSTAT

CRC_NOML
CRC_ACTL

EPR1_NOML
EPR1_ACTL
EPR2_NOML
EPR2_ACTL

0x0110
0x0114
0x0118

0x011C
0x011D

0x011E
0x0122

0x0126
0x0128

0x012A
0x012C

0x012E

0x0130
0x0134

0x0138

0x013A
0x013B

0x013C
0x0142
0x0148

0x014E
0x0154
0x015A

0x0160
0x0166
0x01l6C

0x0172
0x0173

0x0100

//Signal periods per rev. axis 1
//Signal periods per rev. axis 2
//Signal periods per rev. for axis comb.

//Compensation on/off axis 1
//Compensation on/off axis 2

//Compensation start axis 1
//Compensation start axis 2

//Number of comp. points axis 1
//Number of comp. points axis 2

//Interval comp. points axis 1
//Interval comp. points axis 2

//Latch enable

//Ref offset axis 1
//Ref offset axis 2

//Axis combination

//Compensation run axis 1(axis 2)
//Compensation run axis 2

//Preset external setting axis 1
//Preset external setting axis 2
//Preset external setting for axis comb.

//Preset Master setting axis 1
//Preset Master setting axis 2
//Preset Master setting for axis comb.

//Axis offset axis 1
//Axis offset axis 2
//Axis offset for axis combination

//External function 1
//External function 2

// Master interrupt function

0x0000 //Position value axis 1
0x0002

0x0004

0x0006 //Status axis 1

0x0007 //Transfer marker axis 1

0x0008 //Position value axis 2
0x000A

0x000C

0x000E //Status axis 2

0x000F //Transfer marker axis 2

0x0010 //Pos. value comb. axis
0x0012

0x0014

0x0016 //Status combined axis
0x0017 //Transfer marker comb. axis

0x0018 //IK interrupt status

0x001A //Nominal CRC sum EPROM
0x001C //Actual CRC sum EPROM

0x001E //Nominal CRC sum EPROM 1
0x0022 //Actual CRC sum EPROM 1
0x0026 //Nominal CRC sum EPROM 2
0x002A //Actual CRC SUM EPROM 2

#define HRDVERS 0x002E //Hardware version
#define SFTVERS 0x0030 //Software version

#define SYSST1 0x003C //System status 1
#define SYSST2 0x003D //System status 2

#define PRES1 0x003E //Preset axis 1
#define PRES2 0x0044 //Preset axis 2
#define PRES_COMB 0x004A //Preset axis combination

void far interrupt NewInterruptRoutine (void) ;
void RestoreOldInterruptVector (void) ;

void Read_IK_InterruptStatus (unsigned char) ;
void Evaluate_IK InterruptStatus (unsigned char);

void MasterInterrupt (unsigned char, unsigned char, unsigned short);

void InitIK320 (unsigned char, unsigned char) ;
void InitParams (unsigned char) ;
void SetParam (unsigned char, unsigned short, long, short);

void TraverseOverReferenceMark (unsigned char, unsigned char,
unsigned char);

void DisplayPositionValue (unsigned char, unsigned char) ;
void SynchroPosTrigger (unsigned char, unsigned char) ;

void CompensationRun (unsigned char, unsigned char,

unsigned char, unsigned char,

unsigned short, unsigned short, short);
void CompensationOnOff (unsigned char, unsigned char) ;

void DisplayMessage (void) ;
void DisplayError (void) ;

9.4 The Functions in IK320.H

DR. JOHANNES HEIDENHAIN GmbH, Traunreut, Germany
Driver Unit for IK 320

VvV 1.00
September 1995

#include <stdlib.h>

#include <conio.h>

#include <stdio.h>

#include <dos.h>

#include <process.h>

#include "vmerotec.h"//Header file for ROTEC VME interface
#include "ik320.h"

#include "sample.h"

static struct TWOBYTES {unsigned char ucO, ucl;};
static struct ONEWORD {unsigned short us;};
static union WORDBYTE ({struct TWOBYTES tb;

struct ONEWORD ow; }stawbStatus;

static unsigned char staucDIP_Switch_II = DIP_SWITCH_SII;

45

46

static unsigned char staucAxislWasRead, staucAxis2WasRead;

static unsigned char staucAxisComWasRead;

static unsigned char staucREF1Crossed, staucREF2Crossed;

static unsigned char staucInterruptFinished;

static double stadPositionValuel, stadPositionValue?2;

static double stadPositionValueCom;

extern unsigned char extucErrorCode, extucMessage;
pOriginalInterruptVector

Specifies a vector for the original interrupt.

NewInterruptRoutine
This function specifies the interrupt routine for IK interrupt
void interrupt far NewInterruptRoutine (void)
{
unsigned short usAddress;
outp (INTC2ALl, inp (INTC2A1l) | ~INT_MASK) ; //Disable IRQ15
//Reset DOS-interrupt line
outp (INTC2A0, EOI) ;
outp (INTC1AQ,EOQI) ;
_enable () ; //Enable DOS interrupt
usAddress = CALCULATE_IK_ ADDRESS (staucDIP_Switch_ II);
SWITCH_VME_TO_A24_ADDRESS_SPACE (staucDIP_Switch_II);
Read_IK_InterruptStatus (staucDIP_Switch_II);
Evaluate_IK InterruptStatus (staucDIP_Switch ITI);

//ROTEC specific code: Reset VME interrupt line
int_eoil (IACK3) ;

outp (INTC2A1, inp (INTC2A1l) & INT_MASK); //enable IRQ15

usAddress = CALCULATE_IK_ADDRESS (staucDIP_Switch_ITI);
outport (usAddress + INTSTAT, 0x0000);

staucInterruptFinished = 1; //Interrupt finished

}//End NewInterruptRoutine

RestoreOldInterruptVector
This function restores the old interrupt vector.

void RestoreOldInterruptVector (void)

{
//Disable hardware interrupts
_disable();
//Restore original interrupt vector
_dos_setvect (INT_NR,pOriginalInterruptVector) ;
//Enable hardware interrupts
_enable () ;

}//End RestoreOldInterruptVector

Read_IK_ InterruptStatus

This function reads the interrupt status word of the IK.
void Read_IK_InterruptStatus (unsigned char ucDIP_Switch_IT)
{

short usAddress;
//Calculate address

usAddress = CALCULATE_IK_ADDRESS (ucDIP_Switch_ II);

//Read status

stawbStatus.ow.us = inport (usAddress + INTSTAT);
}//End Read_IK_InterruptStatus

Evaluate_IK InterruptStatus

When the IK sends an interrupt to the master, the cause of the
interrupt is shown in the interrupt status word. This function
evaluates the interrupt status word.

void Evaluate_IK InterruptStatus (unsigned char ucDIP_Switch_IT)
{

unsigned short usDummy, usAddress;
long 1Dummy;

usAddress = CALCULATE_IK_ADDRESS (ucDIP_Switch_II);
switch (stawbStatus.tb.ucl)

case 0x00:
break;

case 0x01:

usDummy=inport (usAddress + POS_X1_1);
1Dummy=(long) (usDummy) <<16;
usDummy=inport (usAddress + POS_X1_2);
1Dummy+=usDummy ;
stadPositionValuel= (double) 1Dummy;
usDummy=inport (usAddress + POS_X1_3);
stadPositionValuel+=(double)usDummy/ (SUBDIVISION*16.) ;
outportb (usAddress + TM_X1, (char)0x00);
usDummy=inportb (usAddress + STAT_X1);
staucAxislWasRead = 1;

break;

case 0x02:
usDummy=inport (usAddress + POS_X2_1);
1Dummy= (long) (usDummy) <<16;
usDummy=inport (usAddress + POS_X2_2);
1Dummy+=usDummy ;
stadPositionValue2=(double) lDummy;
usDummy=inport (usAddress + POS_X2_3);
stadPositionValue2+=(double)usDummy/ (SUBDIVISION*16.) ;
outportb (usAddress + TM_X2, (char)0x00);
usDummy=inportb (usAddress + STAT_X2);
staucAxis2WasRead = 1;
break;

case 0x03:
usDummy=inport (usAddress + POS_COMB_1) ;
1Dummy= (long) (usDummy) <<16;
usDummy=inport (usAddress + POS_COMB_2) ;
1Dummy+=usDummy ;
stadPositionValueCom= (double) 1Dummy;
usDummy=inport (usAddress + POS_COMB_3) ;
stadPositionValueCom+= (double)usDummy/ (SUBDIVISION*16.) ;
outportb (usAddress + TM_COMB, (char)0x00);
usDummy=inportb (usAddress + STAT_COMB) ;
staucAxisComWasRead = 1;
break;

case 0x04:
if (stawbStatus.tb.ucO & 0x01)
{

extucErrorCode = 0x01;

i% (stawbStatus.tb.uc0 & 0x02)
éxtucErrorCode = 0x02;

bieak;

47

case 0x05:
if (stawbStatus.tb.ucO & 0x01)
{

extucErrorCode = 0x03;

i% (stawbStatus.tb.ucO0 & 0x02)
éxtucErrorCode = 0x04;

bieak;

case 0x06:
if (stawbStatus.tb.ucO0 == 1)
outportb (usAddress + TM_X1, (char)0x00);//Reset TM_X1
else if (stawbStatus.tb.uc0 == 2)
outportb (usAddress + TM_X2, (char)0x00);//Reset TM_X2
else
outportb (usAddress + TM_COMB, (char)0x00);//Reset TM_COMB
break;

case 0x07:

extucMessage = 0x01;

if (stawbStatus.tb.ucO & 0x01)
{

extucErrorCode = 0x05;

}

if (stawbStatus.tb.ucO & 0x02)
{

extucErrorCode = 0x06;
i% (stawbStatus.tb.ucO0 & 0x04)
éxtucErrorCode = 0x07;
i% (stawbStatus.tb.ucO0 & 0x08)
%xtucErrorCode = 0x08;

if (stawbStatus.tb.uc0 & 0x10)
éxtucErrorCode = 0x09;
i% (stawbStatus.tb.ucO0 & 0x20)
éxtucErrorCode = 0x10;
i% (stawbStatus.tb.ucO0 & 0x40)
%xtucErrorCode = 0x11;

break;

case 0x08:
extucMessage = 0x02;
staucREF1Crossed = 1;
break;

case 0x09:
extucMessage = 0x03;
staucREF2Crossed = 1;

break;
case 0x0A:
if (stawbStatus.tb.ucO0 == 0x01)
éxtucErrorCode = 0x12;
bi}feak;

case 0x0B:
switch (stawbStatus.tb.uc0)
{

case 0x00:

extucMessage = 0x04;
break;
case 0x01:
extucErrorCode = 0x13;
break;
case 0x02:
extucErrorCode = 0x14;
break;
case 0x03:
extucErrorCode = 0x15;
break;
case 0x04:
extucErrorCode = 0x16;
break;
case 0x05:
extucErrorCode = 0x17;
break;
case 0x06:
extucErrorCode = 0x18;
break;
case 0x10:
extucMessage = 0x05;
break;
default:
extucErrorCode = 0x99;
}

break;

case 0x0C:
switch (stawbStatus.tb.ucO)

case 0x00:

extucMessage = 0x06;
break;

case 0x01:
extucErrorCode = 0x19;
break;

case 0x02:
extucErrorCode = 0x20;
break;

case 0x03:
extucErrorCode = 0x21;
break;

case 0x04:
extucErrorCode = 0x22;
break;

case 0x05:
extucErrorCode = 0x23;
break;

case 0x06:
extucErrorCode = 0x24;

break;
case 0x10:
extucMessage = 0x07;
break;
default:
extucErrorCode = 0x99;
}
break;
case 0x0E:
if (stawbStatus.tb.ucO0 == 0x01)
{
extucErrorCode = 0x25;
}
if (stawbStatus.tb.uc0 == 0x02)
{
extucErrorCode = 0x26;
}
break;

case 0x0F:
if (stawbStatus.tb.uc0 == 0x01)
{

49

50

extucErrorCode = 0x27;
i% (stawbStatus.tb.uc0 == 0x02)
éxtucErrorCode = 0x28;
i% (stawbStatus.tb.uc0 == 0x03)
%xtucErrorCode = 0x29;

break;

case 0x10:
extucMessage = 0x08;
break;

case 0x11:
extucMessage = 0x09;
break;

case O0xFD:
switch (stawbStatus.tb.ucO)
{
case 0x01:
extucErrorCode = 0x30;
break;
case 0x02:
extucErrorCode = 0x31;
break;
default:
extucErrorCode = 0x99;

}

case OxFE:
extucErrorCode = 0x32;
break;

case OxFF:
extucErrorCode = 0x33;
break;

default:
extucErrorCode = 0x99;
}//End switch - stawbStatus.tb.ucl
}//End Evaluate_IK_InterruptStatus

MasterInterrupt
This function sets parameter P81 and generates a master interrupt

void MasterInterrupt (unsigned char ucDIP_Switch_ T,
unsigned char ucDIP_Switch_ITI,
unsigned short usFunction)

short usAddress, sBasAdrGroup;

//calculate synchronous latch interrupt address
sBasAdrGroup = CALCULATE_BAS_ADR_GROUP (ucDIP_Switch_TI);
usAddress = CALCULATE_IK_ADDRESS (ucDIP_Switch_II);

outport (usAddress + PAR_81,usFunction);

_disable();

SWITCH_VME_TO_Al6_ADDRESS_SPACE (ucDIP_Switch_I);

//Execute master interrupt

outportb ((short) (sBasAdrGroup + ((ucDIP_Switch I & Ox1F) * 2)),
(char) 0x00) ;

SWITCH_VME_TO_A24_ADDRESS_SPACE (ucDIP_Switch_ IT);

_enable() ;

}//End MasterInterrupt

InitIk320

This function initializes the IK.

void InitIK320 (unsigned char ucDIP_Switch_T,

{

unsigned char ucDIP_Switch_II)
printf("\nInitialize IK 320 %02x\n",ucDIP_Switch_ITI);

//Disable hardware interrupts
_disable();

//Save old interrupt vector
pOriginalInterruptVector = _dos_getvect (INT_NR) ;

//Set new interrupt vector
_dos_setvect (INT_NR, NewInterruptRoutine) ;

//Set interrupt controller mask
outp (INTC2A1l, inp (INTC2A1l) & INT MASK) ;
outp (INTC1Al, inp (INTC1Al) & ~0x04);

//Set interrupt controller to End of Interrupt
outp (INTC2A0,EQI) ;
outp (INTC1AQ,EQI) ;

//Enable hardware interrupts
_enable () ;

SWITCH_VME_TO_A24_ADDRESS_SPACE (ucDIP_Switch_ IT);

InitParams (ucDIP_Switch_ITI);//Set the parameters
staucInterruptFinished = 0;
MasterInterrupt (ucDIP_Switch_ I, ucDIP_Switch_II, 0x0007);
do
{
if (extucErrorCode)
{
DisplayError () ;
return;
}
if (extucMessage)
{
DisplayMessage () ;
}

while (staucInterruptFinished == 0);//Wait for interrupt

}//End InitIk320

InitParams

This function initializes the Parameters.

void InitParams (unsigned char ucDIP_Switch_II)

{

SetParam (ucDIP_Switch II, PAR_01_1, 0x00,0);//Count. direct. axis 1

SetParam (ucDIP_Switch II, PAR_01_2, 0x00,0);//Count. direct. axis 2

SetParam (ucDIP_Switch_II, PAR_01_3, 0x00,0);//Counting direction
//axis combination

SetParam (ucDIP_Switch II, PAR_02_1, 0x01,0);//Definition axis 1
SetParam (ucDIP_Switch II, PAR_02_2, 0x01,0);//Definition axis 2
SetParam (ucDIP_Switch II, PAR_02_3, 0x01,0);//Definition axis comb.

//Number of bits for subdivision
SetParam (ucDIP_Switch_II, PAR_03 , INTERPOLATION_BITS,O0);

SetParam (ucDIP_Switch II, PAR _04_1, 0x0000,0);//Ref. mark spacing 1
SetParam (ucDIP_Switch II, PAR_04_2, 0x0000,0);//Ref. mark spacing 2

SetParam (ucDIP_Switch_II, PAR_05_1, 0x00008CA0,0);//Signal per. 1
SetParam (ucDIP_Switch_II, PAR_05_2, 0x00000800,0);//Signal per. 2
SetParam (ucDIP_Switch_II, PAR_05_3, 0x00000000,0);//Signal periods

51

52

//axis combination

SetParam (ucDIP_Switch_II, PAR _06_1, 0x00,0);//Compensation on/off 1
SetParam (ucDIP_Switch II, PAR_06_2, 0x00,0);//Compensation on/off 2

SetParam (ucDIP_Switch II, PAR_07_1, 0x00000000,0);//Comp. start 1
SetParam (ucDIP_Switch_II, PAR_07_2, 0x00000000,0);//Comp. start 2

SetParam (ucDIP_Switch_II, PAR_08_1, 0x0100,0);//Nr. of comp. pts. 1
SetParam (ucDIP_Switch_II, PAR_08_2, 0x0100,0);//Nr. of comp. pts. 2

SetParam (ucDIP_Switch_II, PAR_09_1, 0x0010,0);//Interv. of c. pts 1
SetParam (ucDIP_Switch_II, PAR_09_2, 0x0010,0);//Interv. of c. pts 2

SetParam (ucDIP_Switch_II, PAR_10 , 0x00,0);//Latch enable

SetParam (ucDIP_Switch_II, PAR_19_1, 0x00000000,0);//Ref. offs. 1
SetParam (ucDIP_Switch II, PAR_19 2, 0x00000000,0);//Ref. offs. 2

SetParam (ucDIP_Switch II, PAR_21 , 0x00,0);//Axis combination

//Compensation run
SetParam (ucDIP_Switch II, PAR_30_1, 0x01,0);//Dir. (axis 1) &
//freq. (axis 1+2)
SetParam (ucDIP_Switch II, PAR_30_2, 0x00,0);//Direction axis 2

SetParam (ucDIP_Switch_II, PAR_70_1, 0x00000000,0);//Ext. preset 1

SetParam (ucDIP_Switch_II, PAR_70_2, 0x00000000,0);//Ext. preset 2

SetParam (ucDIP_Switch_II, PAR_70_3, 0x00000000,0);//Ext. preset
//axis combination

SetParam (ucDIP_Switch_II, PAR_71_1, 0x00000000,0);//Bus preset 1

SetParam (ucDIP_Switch_II, PAR_71_2, 0x00000000,0);//Bus preset 2

SetParam (ucDIP_Switch_II, PAR_71_3, 0x00000000,0);//Bus preset
//axis combination

SetParam (ucDIP_Switch II, PAR_72_1, 0x00000000,0);//Axis offset 1

SetParam (ucDIP_Switch II, PAR_72_ 2, 0x00000000,0);//Axis offset 2

SetParam (ucDIP_Switch II, PAR_72_3, 0x00000000,0);//Axis offset
//axis combination

SetParam (ucDIP_Switch II, PAR_80_1, 0x00,0);//External function 1
SetParam (ucDIP_Switch II, PAR_80_2, 0x00,0);//External function 2

}//End InitParams

void SetParam (unsigned char ucDIP_Switch_II,
unsigned short usOffsetAddress, long lData,short sData)

{

unsigned short usBaseAddress;

usBaseAddress = CALCULATE_IK_ ADDRESS (ucDIP_Switch_ITI);

switch (usOffsetAddress)
{

case PAR_01_1:
outportb (usBaseAddress+usOffsetAddress, (char) lData);
break;

case PAR_01_2:
outportb (usBaseAddress+usOffsetAddress, (char) 1lData) ;
break;

case PAR_01_3:
outportb (usBaseAddress+usOffsetAddress, (char) 1lData) ;
break;

case PAR_02_1:
outportb (usBaseAddress+usOffsetAddress, (char) lData);
break;

case PAR_02_2:
outportb (usBaseAddress+usOffsetAddress, (char) 1lData) ;
break;

case PAR_02_3:
outportb (usBaseAddress+usOffsetAddress,
break;

case PAR_03

(char) 1Dhata);

outport (usBaseAddress+usOffsetAddress, (short)

break;
case PAR_04_1:

outport (usBaseAddress+usOffsetAddress, (short)
break;

case PAR_04_2:
outport (usBaseAddress+usOffsetAddress, (short)
break;

case PAR_05_1:
outport (usBaseAddress+usOffsetAddress,
outport (usBaseAddress+usOffsetAddress+2,
break;

case PAR_05_2:
outport (usBaseAddress+usOffsetAddress,
outport (usBaseAddress+usOffsetAddress+2,
break;

case PAR_05_3:
outport (usBaseAddress+usOffsetAddress,
outport (usBaseAddress+usOffsetAddress+2,
break;

case PAR_06_1:
outportb (usBaseAddress+usOffsetAddress,
break;

case PAR_06_2:
outportb (usBaseAddress+usOffsetAddress,
break;

case PAR_07_1:

(short)
(short)

(short)
(short)

(short)
(short)

1Data) ;

1Data) ;

1Data) ;

(1Data
(1Data

(1Data
(1Data

(1Data
(1Data

(char) 1lData) ;

(char) 1Data) ;

outport (usBaseAddress+usOffsetAddress, (short)
outport (usBaseAddress+usOffsetAddress+2, (short)
break;

case PAR_07_2:
outport (usBaseAddress+usOffsetAddress, (short)
outport (usBaseAddress+usOffsetAddress+2, (short)
break;

case PAR_08_1:
outport (usBaseAddress+usOffsetAddress, (short)
break;

case PAR_08_2:
outport (usBaseAddress+usOffsetAddress, (short)
break;

case PAR_09_1:
outport (usBaseAddress+usOffsetAddress, (short)
break;

case PAR_09_2:
outport (usBaseAddress+usOffsetAddress, (short)

break;

case PAR_10 :
outportb (usBaseAddress+usOffsetAddress,
break;

case PAR_19 1:
outport (usBaseAddress+usOffsetAddress,
outport (usBaseAddress+usOffsetAddress+2,
break;

case PAR_19_2:
outport (usBaseAddress+usOffsetAddress,
outport (usBaseAddress+usOffsetAddress+2,
break;

case PAR_21
outportb (usBaseAddress+usOffsetAddress,
break;

case PAR_30_1:
outportb (usBaseAddress+usOffsetAddress,
break;

case PAR_30_2:
outportb (usBaseAddress+usOffsetAddress,
break;

case PAR_70_1:
outport (usBaseAddress+usOffsetAddress,
outport (usBaseAddress+usOffsetAddress+2,
outport (usBaseAddress+usOffsetAddress+4,

(1Data
(1lData

(1Data
(1Data

1Data) ;

1Data) ;

1Data) ;

1Data) ;

(char) 1Data);

(short)
(short)

(short)
(short)

(1Data
(1Data

(1lData
(1lData

(char) 1Data);

(char) 1Data);

(char) 1Data) ;

(short)
(short)
sData) ;

(1Data
(1Data

>> 16));
& Oxffff));

>> 16));
& Oxffff));

>> 16));
& Oxffff));

>> 16));
& Oxffff));

>> 16));
& Oxffff));

>> 16));
& Oxffff));

>> 16));
& Oxffff));

>> 16));
& Oxffff));

53

break;

case PAR_70_2:
outport (usBaseAddress+usOffsetAddress, (short) (lData >> 16));
outport (usBaseAddress+usOffsetAddress+2, (short) (lData & Oxffff));
outport (usBaseAddress+usOffsetAddress+4, sData);

break;
case PAR_70_3:
outport (usBaseAddress+usOffsetAddress, (short) (lData >> 16));

)
outport (usBaseAddress+usOffsetAddress+2, (short) (lData & Oxffff));
outport (usBaseAddress+usOffsetAddress+4, sData);

break;
case PAR_71_1:
outport (usBaseAddress+usOffsetAddress, (short (1Data >> 16));

)
outport (usBaseAddress+usOffsetAddress+2, (short) (lData & Oxffff));
outport (usBaseAddress+usOffsetAddress+4, sData);

break;
case PAR_71_2:
outport (usBaseAddress+usOffsetAddress, (short (1Data >> 16));

)
outport (usBaseAddress+usOffsetAddress+2, (short) (lData & Oxffff));
outport (usBaseAddress+usOffsetAddress+4, sData);

break;
case PAR_71_3:
outport (usBaseAddress+usOffsetAddress, (short) (1lData >> 16));

)
outport (usBaseAddress+usOffsetAddress+2, (short) (lData & Oxffff));
outport (usBaseAddress+usOffsetAddress+4, sData);

break;
case PAR_72_1:
outport (usBaseAddress+usOffsetAddress, (short) (lData >> 16));

)
outport (usBaseAddress+usOffsetAddress+2, (short) (lData & Oxffff));
outport (usBaseAddress+usOffsetAddress+4, sData);

break;
case PAR_72_2:
outport (usBaseAddress+usOffsetAddress, (short) (lData >> 16));

)
outport (usBaseAddress+usOffsetAddress+2, (short) (lData & Oxffff));
outport (usBaseAddress+usOffsetAddress+4, sData);

break;
case PAR_72_3:
outport (usBaseAddress+usOffsetAddress, (short (1Data >> 16));

)
outport (usBaseAddress+usOffsetAddress+2, (short) (lData & Oxffff));
outport (usBaseAddress+usOffsetAddress+4, sData);
break;
case PAR_80_1:
outportb (usBaseAddress+usOffsetAddress, (char) 1lData);
break;
case PAR_80_2:
outportb (usBaseAddress+usOffsetAddress, (char) 1lData);
break;
default:
gotoxy (1,23);
puts ("Error: Wrong parameter number") ;
}//End switch (usOffsetAddress)
}//End SetParam

TraverseOverReferenceMark

This function causes the operator to traverse over the reference
mark.

void TraverseOverReferenceMark (unsigned char ucDIP_Switch_T,
unsigned char ucDIP_Switch_ IT,
unsigned char ucAxis)

clrscr();
switch (ucAxis)

{
case 1:

printf ("\nCross over reference mark of axis 1\n");
staucREF1Crossed = 0;

MasterInterrupt (ucDIP_Switch_ I, ucDIP_Switch_II, 0x0008);
do

{
if (extucErrorCode)

{

DisplayError () ;
break;

}
if (extucMessage)
{
DisplayMessage() ;
}

}
while (! (staucREFl1lCrossed)) ;

break;

case 2:
printf ("Cross over reference mark of axis 2\n");

staucREF2Crossed = 0;

MasterInterrupt (ucDIP_Switch I, ucDIP_Switch_II, 0x0009);

do
{

if (extucErrorCode)
{

DisplayError () ;
break;

}

if (extucMessage)

{
DisplayMessage () ;

}
while (! (staucREF2Crossed)) ;
break;
default:
gotoxy (1,23);
puts ("Error: Wrong axis number") ;

}
}//End TraverseOverReferenceMark

SynchroPosTrigger

This function triggers axis 1 and axis 2 synchronously

void SynchroPosTrigger (unsigned char ucDIP_Switch_T,
unsigned char ucDIP_Switch_ITI)
{
short sBasAdrGroup;
//calculate synchronous latch interrupt address
sBasAdrGroup = CALCULATE_BAS_ADR_GROUP (ucDIP_Switch_TI);

_disable();
SWITCH_VME_TO_Al6_ADDRESS_SPACE (ucDIP_Switch_I);
outportb (sBasAdrGroup, (char)0x00);//Synchronous latch
SWITCH_VME_TO_A24_ADDRESS_SPACE (ucDIP_Switch_TII);
_enable();

}//End SynchroPosTrigger

DisplayPositionValue

This function displays the actual position

void DisplayPositionValue (unsigned char ucDIP_Switch_TI,
unsigned char ucDIP_Switch_II)

{
clrscr();
printf ("\n\n");
do

{
SynchroPosTrigger (ucDIP_Switch I, ucDIP_Switch_II);

do

{

if (extucErrorCode)
{

DisplayError () ;
return;

}

}

55

56

while (! (staucAxislWasRead && staucAxis2WasRead)) ;

printf ("\r\t%10.4£f\t%10.4f",stadPositionValuel, stadPositionValue2) ;
staucAxislWasRead = 0;
staucAxis2WasRead 0;

}
while (!kbhit());getch();
}//End DisplayPositionValue

CompensationRun
This function starts the compensation run

void CompensationRun (unsigned char ucDIP_Switch_ T,
unsigned char ucDIP_Switch_IT,
unsigned char ucAxis,
unsigned char ucCompensationStart,
unsigned short usNumberOfCompPoints,
unsigned short usIntervalOfCompPoints,
short sDirectionAndFrequency)
{
switch (ucAxis)
{
case 1: SetParam (ucDIP_Switch_II, PAR_06_1, 0x01,0);//Comp. on/off
SetParam (ucDIP_Switch_II, PAR _07_1, ucCompensationStart,0);
SetParam (ucDIP_Switch_II, PAR_08_1, usNumberOfCompPoints,0);
SetParam (ucDIP_Switch_II, PAR_09_1, usIntervalOfCompPoints,0);
SetParam (ucDIP_Switch_II, PAR_30_1, sDirectionAndFrequency, 0) ;
break;
case 2: SetParam (ucDIP_Switch II, PAR_06_2, 0x01,0);//Comp. on/off
SetParam (ucDIP_Switch_II, PAR_07_2, ucCompensationStart,0);
SetParam (ucDIP_Switch_II, PAR_08_2, usNumberOfCompPoints,0);
SetParam (ucDIP_Switch_II, PAR_09_2, usIntervalOfCompPoints,0);
SetParam (ucDIP_Switch_II, PAR _30_2, sDirectionAndFrequency, 0);
break;
default:
gotoxy (1,23);
puts ("Error: The input value for axis must be 1 or 2\n");
return;

staucInterruptFinished = 0;
//Update parameter
MasterInterrupt (ucDIP_Switch_ I, ucDIP_Switch_II, 0x000a) ;

do
if (extucErrorCode)
{

DisplayError () ;
return;

}

while (staucInterruptFinished == 0);//Wait for Interrupt

clrscr();
printf ("\nRecord compensation values axis %2d \n\n\
- press any key to start\n\n\n\n", ucAxis);
do

{
SynchroPosTrigger (ucDIP_Switch I, ucDIP_Switch_II);

do
{
if (extucErrorCode)
{
DisplayError () ;
return;
}

}
while (! (staucAxislWasRead && staucAxis2WasRead)) ;

printf ("\r\t%10.4£f\t%10.4f",stadPositionvValuel, stadPositionvValue2) ;
staucAxislWasRead =0;
staucAxis2WasRead =0;

}
while (!kbhit());getch();
clrscr();

switch (ucAxis)
{
//Compensation run axis 1
case 1:
MasterInterrupt (ucDIP_Switch_I, ucDIP_Switch_II, 0x000Db);
printf ("\nRecord of compensation points for axis 1 started\n\n"
printf ("- Start axis\n");
break;
//Compensation run axis 2
case 2:
MasterInterrupt (ucDIP_Switch_I, ucDIP_Switch_II, 0x000c);
printf ("\nRecord of compensation points for axis 2 started\n\n"
printf ("- Start axis\n");
break;
}
do
{
if (extucErrorCode)
{
DisplayError () ;
return;
}
}
while (! (extucMessage)) ;
clrscr();
DisplayMessage () ;
do
{
if (extucErrorCode)
{
DisplayError () ;
return;
}
}
while (! (extucMessage)) ;
clrscr();
DisplayMessage () ;
do
{
if (extucErrorCode)
{
DisplayError () ;
return;
}
}
while (! (kbhit()));
getch () ;

}//End CompensationRun

CompensationOnOff

This function switches the signal compensation on or off.

void CompensationOnOff (unsigned char ucDIP_Switch_ T,

{

unsigned char ucDIP_Switch_ITI)

char cCharacter,cAxis;
fflush(stdin) ;
printf("\n Axis 1 or 2? ")
do
{
if (extucErrorCode)
{
DisplayError () ;
return;
}
}
while (!kbhit());

)

);

57

58

cAxis=getche () ;

fflush(stdin) ;
printf ("\n Compensation on = ¢ / off = o ") ;
do
{
if (extucErrorCode)
{
DisplayError () ;
return;
}
}
while (!kbhit());

cCharacter=getche() ;

switch (cAxis)
{
//Switch compensation on/off axis 1
case '1':
if (cCharacter=='c’)
SetParam (ucDIP_Switch_II, PAR_06_1, 0x01,0);
if (cCharacter=='0")
SetParam (ucDIP_Switch_II, PAR _06_1, 0x00,0);
break;
//Switch compensation on/off axis 2
case '2':
if (cCharacter=='c’)
SetParam (ucDIP_Switch II, PAR_06_2, 0x01,0);
if (cCharacter=='0")
SetParam (ucDIP_Switch_II, PAR_06_2, 0x00,0);
break;
default:
gotoxy (1,23);
puts ("Error: Wrong character");
}
//Update parameter
MasterInterrupt (ucDIP_Switch_ I, ucDIP_Switch_II, 0x000a) ;
}//End CompensationOnOff

DisplayMessage

This function displays the messages of the IK interrupt status.

void DisplayMessage (void)
{

gotoxy (1,20);

switch (extucMessage)

case 0x01:

puts ("POST concluded\n") ;

break;

case 0x02:

puts ("REF axis 1 was crossed over\n");

break;

case 0x03:

puts ("REF axis 2 was crossed over\n");

break;

case 0x04:

puts ("Compensation run ended axis 1 - Press any key\n");

break;

case 0x05:

puts ("Record of Compensation Points ended axis 1\
- Please wait\n");

break;

case 0x06:

puts ("Compensation run ended axis 2 - Press any key\n");

break;

case 0x07:

puts ("Record of Compensation Points ended axis 2\
- Please wait\n");

break;

case 0x08:
puts
break;
case 0x09:
puts
break;
default:
puts
}
extucMessage =
delay (3000);

0;

}//End DisplayMessage

("Preset set via master\n");

("Preset set via external function\n");

("Unknown message code");

DisplayError

This function displays the error messages of the
IK interrupt status.

gotoxy (1,23);

switch

case 0x01:

puts ("Error:
break;

case 0x02:
puts ("Error:
break;

case 0x03:
puts ("Error:
break;

case 0x04:
puts ("Error:
break;

case 0x05:
puts ("Error:
break;

case 0x06:
puts ("Error:
break;

case 0x07:
puts ("Error:
break;

case 0x08:
puts ("Error:
break;

case 0x09:

puts ("Error:
break;

case 0x10:
puts ("Error:
break;

case 0x11:
puts ("Error:
break;

case 0x12:
puts ("Error:
break;

case 0x13:
puts ("Error:
break;

case 0x14:
puts ("Error:
break;

case 0x15:
puts ("Error:
break;

case 0x16:
puts ("Error:
break;

case 0x17:

void DisplayError (void)

(extucErrorCode)

No latch on axis 1\n");

No latch on axis 2\n");

Double latch on axis

Double latch on axis

CRC correction value

CRC correction value

1I\n");

2\n") ;

1\n");

2\n") ;

parameter setting\n");

CRC Eprom\n") ;

checksum EPROM 1\n");

checksum EPROM 2\n") ;

hardware\n") ;

wrong parameter setting\n");

axis 1 has

axis 1 has

axis 1 has

axis 1 has

no absolute reference\n");

wrong speed\n") ;

wrong position\n");

wrong direction\n");

59

60

puts ("Error: axis 1 has wrong number of measuring\

interrupts\n") ;

break;

case 0x18:

puts ("Error: wrong calculation during compensation run\
of axis 1\n");

break;

case 0x19:

puts ("Error: axis 2 has no absolute reference\n");

break;

case 0x20:

puts ("Error: axis 2 has wrong speed\n");

break;

case 0x21:

puts ("Error: axis 2 has wrong position\n");

break;

case 0x22:

puts ("Error: axis 2 has wrong direction\n");

break;

case 0x23:

puts ("Error: axis 2 has wrong number of measuring\
interrupts\n") ;

break;

case 0x24:

puts ("Error: wrong calculation during compensation run\
of axis 2\n");

break;

case 0x25:

puts ("Error: REF distance: axis 1\n");

break;

case 0x26:

puts ("Error: REF distance: axis 2\n");

break;

case 0x27:

puts ("Error: CRC - EPROM\n") ;

break;

case 0x28:

puts ("Error: CRC - Compensation values axis 1\n");

break;

case 0x29:

puts ("Error: CRC - Compensation values axis 2\n");

break;

case 0x30:

puts ("Error: Stack of main program incorrect\n");

break;

case 0x31:

puts ("Error: Memory area for stack is exceeded\n");

break;

case 0x32:

puts ("Error:Hardware defective\n");

break;

case 0x33:

puts ("Error:IK has received Unknown command\n") ;

break;

case 0x99:

puts ("Error: Unknown code for interrupt status");

break;

default:
puts ("Unknown error code");
}

extucErrorCode = 0;

delay (3000);
}//End DisplayError

10.

Specifications of the IK 320

Mechanical data

Dimensions

Double-height VME board, size B
External dimensions: 262 mm x 187 mm x 20 mm

Operating temperature

Storage temperature

0°C to 55 °C (32 °F to 131 °F)
-40 °C to 75 °C (40 °F to 167 °F)

Electrical data

VMEbus specification ANSI/IEEE STD1014-1987, IEC 821 and 297
Double height board with J1 connector
1 slot
Interrupter: DO8(0O) ROAK
Addresses Address space A16: Slave, D08(O) (port)
Slave, ADO (synchronous latching)
Memory requirement: 16 kilobytes per card
Address space A24: Slave, D16, D08 (EO), 16 kilobytes
Address space selectable via DIP switch
Inputs/outputs

Encoder inputs

Encoder outputs

External latch signals

IK 320 V: X1, X3: D-sub connector 15-pin, sinusoidal signals: 1 Vpp
IK 320 A: X1, X3: D-sub connector 9-pin, sinusoidal signals: 11 pApp
Input frequency: 50 kHz

IK 320.1: X1, X3: D-sub connector 9-pin, sinusoidal signals 22 pyApp
IK 320 V, IK 320 A: X2, X4: D-sub connector 9-pin, sinusoidal signals
11 yapp (reference voltage = 0 V; connection of EXEs impossible)

IK 320.1: X2, X4: D-sub connector 9-pin, sinusoidal signals 22 uApp
X41: D-sub connector 9-pin

6 inputs

—PULSE1, ~PULSE?2 Unigh: 3— 15V Uy ~0.5—1V
—CONTACT1, -CONTACT2

-F1, -F2

Output -LOUT Uhigh: 24-5V Uiow: 0-04V

Signal interpolation

4096-fold

Compensation of
encoder signals

Via 4096 compensation points

Data register for
measured values

48-bit; only 44 bits are used for the measured value

Interrupts

—-IRQ1 to -IRQ7: selectable by jumper

Power consumption

+12V 160 mA
-12V 160 mA
+5V 1.2A

+5Vstanpey 100 pA

61

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-StralRe 5

83301 Traunreut, Germany

@

+49 (8669) 31-0

+49 (8669) 5061
e-mail: info@heidenhain.de

www.heidenhain.de

AT

BE

BR

CA

CH

CN

cz

SK

DK

ES

Fl

HEIDENHAIN
Dr.-Johannes-Heidenhain-Stral3e 5
83301 Traunreut, Deutschland

@ (08669) 311337

(08669) 5061

HEIDENHAIN NV/SA
Pamelse Klei 47,

1760 Roosdaal-Pamel, Belgium
© (054)343158
(054)343173

DIADUR Industria e Comércio Ltda.
Rua Servia, 329, Santo Amaro
04763-070 — Sao Paulo — SP, Brasil
@ (011)5523-6777

(011) 5523 -1411

HEIDENHAIN CORPORATION
Canadian Regional Office

11-335 Admiral Blvd., Unit 11
Mississauga, Ontario L5T2N2, Canada
@ (905)670-8900

(905)670-4426

HEIDENHAIN (SCHWEIZ) AG
Post Box

Vieristrasse 14

8603 Schwerzenbach, Switzerland
© (044)8062727
(044)8062728

HEIDENHAIN (Tianjin)

Optics and Electronics Co. Ltd.

Room 808, The Exchange Beijing Tower 4
No. 118, Jian Guo Lu Yi

Chaoyang District

100022 Beijing, China

< (86) 1065673238

(86) 1065672789

HEIDENHAIN s.r.o.

Stremchové 16

106 00 Praha 10, Czech Republic
< 272658131

272658724

TP TEKNIK A/S
Korskildelund 4

2670 Greve, Denmark
@ (70)100966
(70) 100165

FARRESA ELECTRONICA S.A.
Les Corts, 36-38 bajos

08028 Barcelona, Spain

= 934092491

933395117

HEIDENHAIN AB
Mikkelankallio 3
02770 Espoo, Finland
= (09)8676476
(09) 86764740

FR

GB

GR

HK

HU
RO

JP

KR

MX

NL

HEIDENHAIN FRANCE sarl
2, Avenue de la Cristallerie
92316 Sevres, France

= 0141143000
0141143030

HEIDENHAIN (G.B.) Limited

200 London Road, Burgess Hill

West Sussex RH15 9RD, Great Britain
= (01444)2477 11

(01444)870024

MB Milionis Vassilis
38. Scoufa Str.

St. Dimitrios

17341 Athens, Greece
@ (0210)9336607

(0210) 9349660

HEIDENHAIN LTD

Unit 2, 15/F, APEC Plaza
49 Hoi Yuen Road
Kwun Tong

Kowloon, Hong Kong
© (852)27591920
(852) 27591961

HEIDENHAIN Kereskedelmi Képviselet
Hrivnak Pal utca 13.

1237 Budapest, Hungary

= (1)4210952

(1)4210953

NEUMO VARGUS
Post Box 57057
34-36, Itzhak Sade St.
Tel-Aviv 61570, Israel
© (3)5373275
(3)56372190

ASHOK & LAL

Post Box 5422

12 Pulla Reddy Avenue
Chennai — 600 030, India
= (044)26151289
(044) 26478224

HEIDENHAIN ITALIANA S.r.l.
Via Asiago 14

20128 Milano, Italy

@ 0227075-1
0227075-210

HEIDENHAIN K.K.

Kudan Center Bldg. 10th Floor
Kudankita 4-1-7, Chiyoda-ku
Tokyo 102-0073 Japan

= (03)3234-7781

(03) 3262-2539

HEIDENHAIN LTD.

Suite 1415, Family Tower Building
958-2 Yeongtong-Dong

Paldal-Gu, Suwon

442-470 Kyeonggi-Do, South Korea
@ (82)312011511
(82)312011510

HEIDENHAIN CORPORATION MEXICO

Av. Las Américas 1808

Fracc. Valle Dorado

20235, Aguascalientes, Ags., Mexico
@ (449)9130870

(449)9130876

HEIDENHAIN NEDERLAND B.V.
Post Box 92, 6710 BB EDE
Copernicuslaan 34, 6716 BM EDE
The Netherlands

@ (0318)581800

(0318) 581870

286 941-24 - 1 - 7/2004 - S - Printed in Germany - Subject to change without notice

NO

PL

PT

SE

SG

TR

W

us

ZA

KASPO MASKIN AS
Hoeggvn. 66

7036 Trondheim, Norway
@ (073)969600
(073)969601

APS

Popularna 56

02-473 Warszawa, Poland
= (22)8639737
(22)863 9744

FARRESA ELECTRONICA LDA.
Rua do Outeiro, 1315 1° M

4470 Maia, Portugal

< (22)9478140
(22)9478149

HEIDENHAIN AB
Fittjavagen 23

14553 Norsborg, Sweden
@ (08) 53193350

(08) 53193377

HEIDENHAIN PACIFIC PTE LTD.
51, Ubi Crescent

Singapore 408593,

Republic of Singapore

= (65)6749-3238

(65) 6749-3922

ORSEL LTD.

Kusdili Cad. No. 43

Toraman Han, Kat 3

81310 Kadikoy/Istanbul, Turkey
= (216)3478395
(216)3478393

HEIDENHAIN Co., Ltd.

No. 12-5, Gong 33rd Road
Taichung Industrial Park
Taichung 407, Taiwan, R.O.C.
= (886-4) 23588977
(886-4) 23588978

HEIDENHAIN CORPORATION
333 State Parkway

Schaumburg, IL 60173-5337, U.S.A.
@ (847)490-1191
(847)490-3931

MAFEMA SALES SERVICES C.C.
107 - 16th Road Unit B3

Tillbury Business Park, Randjespark
Midrand, 1685, South Africa

@ (011)3144416
(011)3142289

