

Firmware version
This document describes MSEfirmware.dat v2.3.0 (ID 1090899-05) and MSElibrary v2.3.0 (ID 781598-07) and older.

Fonts used in these instructions

ltems of special interest or concepts that are emphasized to the user are shown in bold type.

Modules
Module Type Description IP ID
MSE 1114 Base 4 axes, EnDat22 P65 747499-01
MSE 1114 Base 4 axes, EnDat22 P40 747499-027)
MSE 1124 Base 4 axes, TTL P65 747511-01
MSE 1124 Base 4 axes, TTL P40 747511-02%
MSE 1184 Base 4 axes, 1 Vpp P65 747500-01
MSE 1184 Base 4 axes, 1 Vpp P40 747500-02%
__ | MSE 1201 Power supply AC 100V ... 240V, power plug P40 747501-01
F'?_, MSE 1201 Power supply AC 100V ... 240V, Cable 2 m with cable gland P65 747501-02
3 | MSE 1202 Power supply DC 24V M8, 3-pin female IP65 747502-01
& | MSE 1202 | Power supply DC 24V M8, 3-pin female IP40 747502-02?
MSE 1314 Axis 4 axes, EnDat22 P65 747503-01
MSE 1314 | Axis 4 axes, EnDat22 IP40 | 747503-027
MSE 1318 Axis 8 axes, EnDat22 P65 747504-01
MSE 1318 | Axis 8 axes, EnDat22 IP40 | 747504-02?
MSE 1324 Axis 4 axes, TTL P65 747512-01
MSE 1324 | Axis 4 axes, TTL P40 | 747512-02%
MSE 1328 Axis 8 axes, TTL P65 747513-01
MSE 1328 | Axis 8 axes, TTL IP40 | 747513-02%
MSE 1332 Analog Analog input P65 747509-01
MSE 1332 | Analog Analog input IP40 747509-022
MSE 1358 Axis 8 axes, Solartron and Tesa half-bridge transducers P65 747514-01
MSE 1358 Axis 8 axes, Solartron and Tesa half-bridge transducers P40 747514-04%
MSE 1358 Axis 8 axes, Mahr half-bridge and LVDT transducers P65 747514-02
MSE 1358 | Axis 8 axes, Mahr half-bridge and LVDT transducers IP40 | 747514-057
MSE 1358 Axis 8 axes, Marposs LVDT transducers P65 747514-03
MSE 1358 Axis 8 axes, Marposs LVDT transducers P40 747514-062
MSE 1384 Axis 4 axes, 1 Vpp P65 747505-01
MSE 1384 | Axis 4 axes, 1Vpp IP40 747505-02?
MSE 1388 Axis 8 axes, 1 Vpp P65 747506-01
MSE 1388 | Axis 8 axes, 1Vpp IP40 | 747506-027
MSE 1401 I/O 4 inputs/4 outputs P40 747507-01
Tcu MSE 1401 I/O 4 inputs/4 outputs, M8 connectors IP65 747507-02
-g MSE 1501 Compressed-air 1 channel P65 747508-01
8 MSE 1501 Compressed-air 1 channel P40 747508-02%

YOne Base module, one Power supply module required.

2)F{equires MSElibrary v2.2.0 or newer.

HEIDENHAIN MSElibrary

irmware version

F

UOISI9A diemuudi

Table of contents

1 Configuring the MSE 1000
2 Library software

3 System integrity

4 Diagnostic modes

5 Trigger line

6 Module Networking and Throughput
7 Module descriptions

8 Operating principles

9 C++ examples

10 C examples

11 Visual Basic examples

12 Delphi examples

13 LabVIEW

1 Configuring the MSE 1000 19

1.1 Ethernet cable 20

1.2 Initial IP address 20

1.3 Changing a modules IP address 20
C++ example 21

1.4 Changing DHCP 22

2 Library software 23

2.1 General information 24

2.2 Installation instructions 24

2.3 Overview 25
Modules 25
Definitions 25
Prerequisites 25
Methods and functions 25
Classes 26
Wrappers 27
Module Communication 27

2.4 DataTypes 28

2.5 Enumerations 29
MSE_CHAIN_CREATION_STATE ... 29
UOM 29
MODULE_ID 30
ENDAT_ERROR_RESULT 32
ENDAT_ERRORS 32
NUM_ENDAT_ERRORS 32
ENDAT_WARNINGS 33
NUM_ENDAT_WARNINGS 33
ENDAT_DIAG 33
MSE_RESPONSE_CODE 34
LATCH_OPTIONS 36
LATCH_CHOICE 36
ROTARY_FORMAT 36
ADC_OPTIONS 37
COUNT_REQUEST_OPTION 37
ENCODER_TYPES_ENUM 38
VPP_VOLTAGE_FEEDBACK 38
INTEGRITY_ENUMS 39
REFERENCE_MARK_ENUM 40
REFERENCE_MARK_STATE 40
COUNTER_STATUS 41
MSE_XML_RETURN 42
MSE_XML_ELEMENTS 43
PROGRAMMING_STATE_ENUMS 46
UdpCmdType 47
LVDT_UOM 49
LVDT_UPDATE_CHOICES 49
LVDT_OVERSAMPLING_CHOICES 49
ANALOG_DIAG_VOLTAGES_ENUM 50
TTL_INTERPOLATION ... 50
SIGNAL_TYPE 51

2.6 Classes and structures 52
ModuleData 52
DeviceData 53
LeftData 54
MSE1000ConnectResponse 54
Encoderinfo b5

2.7 Return values 56
getCode 56
getMethod 56
getline 56
showRespCode 56

Example: 56
2.8 Constants 57
NUM_MSE1000_IO_INPUTS 57
NUM_MSE1000_IO_OUTPUTS 57
DEVICE_NAME_SIZE ... 57
DEVICE_ID_SIZE 57
SERIAL_NUMBER_SIZE 57
SIZE_IP_ADDRESS 58
SIZE_MAC_ADDRESS 58
SIZE_BUILD_INFO 58
SIZE_SERIAL_NUMBER 58
MAX_NUM_MODULES 58
MAX_CHANNELS_PER_MODULE 58
MSE1000_PORT 59
MSE1000_CLIENT_DEFAULT_PORT 59
MSE1000_ASYNC_PORT 59
NUM_INTEGRITY_RANGES 59
NUM_LATCH_TYPES 59
COUNTS_PER_LINE 59
INTERPOLATION_VALUE 59
NUM_LVDT_CHANNELS 59
LVDT_EXCITATION_VOLTAGE_MIN_VPP 60
LVDT_EXCITATION_VOLTAGE_MAX_VPP 60
LVDT_EXCITATION_FREQUENCY_MIN_KHZ 60
LVDT_EXCITATION_FREQUENCY_MAX_KHZ 60
NUM_MSE1000_ANALOG_CHANNELS 60
NUM_MSE1000_ANALOG_VALUES_PER_CHANNEL 60
MAX_NUM_ANALOG_AVG_SAMPLES 60
2.9 Interface methods 61
Mselnterface 61
addModule 61
removeConnections 61
createChain 62
getChainCreationState 62
getNumModules 62
getModule 62
getDeviceModule 63
getEndatModule 63
getloModule 63
get1VppModule 63
getPneumaticModule 64
getAnalogModule 64
getLvdtModule 64
getTtiModule 64
2.10 General methods and functions 65
C++ methods 65
MseModule 65
initializeModule 65
initializeFirmware 65
getModuleType 66
getConfig 66
getNumChannels 67
getModuleData 67
getlLeft 67
getCounts 68
setRotaryFormat 68
getRotaryFormat 68
setDeviceOffset 69
getDeviceOffset 69
setRight 69
resetMse1000 69
program 70

getProgrammingState 70
getProgrammingPercentComplete
showModuleType 70
showModuleld 71

setlp ... 71

setAsyncPort 71

getAsyncPort 72

setDhep ... 72
broadcastOpenConnection 72
setBroadcastingNetmask 73
restoreFactoryDefaults 73

setUdpTimeout 73
getUdpTimeout 73
setUdpNumRetries 74
getUdpNumRetries 74
setNetworkDelay 74
getNetworkDelay 74
setlLatch ... 75
getlLatch 75
getAdcValues 75
getintegrity 76
setAsyncMode 76
clearAllErrors 77
clearlntegrityErrors 77
enableDiags 77
getLibraryVersion 77

C Functions 78
MseModuleCreate 78
MseModuleDelete 78
MseModulelnitialize 78
MseModuleGetLibraryVersion 79
MseModuleGetModuleType 79
MseModuleGetModuleErrorState
MseModuleGetModuleErrors 80
MseModuleGetAdcValues 80
MseModuleClearErrors 81
MseModuleSetIpAddress 81
MseModuleGetlpAddress 81

79

MseModuleGetlpStaticAddress 82

MseModuleGetNetmask 82
MseModuleGetNetmaskStatic 82
MseModuleGetPort 83
MseModuleSetAsyncPort 83
MseModuleGetAsyncPort 83
MseModuleSetUsingDhcp 84
MseModuleGetUsingDhcp 84
MseModuleGetMacAddress 84
MseModuleGetBootloaderVersion

MseModuleGetFirmwareVersion 85

MseModuleGetSerialNumber 8b
MseModuleReset 86
MseModuleShowType 86
MseModuleShowld 86
MseModuleSetBroadcastingNetmask
MseModuleSetUdpTimeout 87
MseModuleGetUdpTimeout 87

MseModuleSetUdpNumRetries 88
MseModuleGetUdpNumRetries 88

MseModuleSetNetworkDelay 88
MseModuleGetNetworkDelay 89
MseModuleBroadcast 89
MseModuleProgram 90

MseModuleGetProgramState 90
MseModuleGetProgramPercentComplete 90
MseModuleGetAsyncMsgType 91
MseModuleGetAsyncMsglpAddress 91
MseModuleGetAsyncMsgPort 91
MseModuleGetAsyncMsgDhcp 92
MseModuleGetAsyncMsgMacAddress 92
MseModuleGetAsyncMsgNetmask 92
MseModuleGetAsyncMsgSerialNumber 93
MseModuleGetAsyncMsgChannelStatus 93
MseModuleGetAsyncMsglatch 94
MseModuleShowRespCode 94

2.11 Device methods 95

2.12

10

MseDeviceModule 95
getEncoderinfo 95

setEncoderinfo 95
getCountingDirection 96
setErrorCompensation 96
getErrorCompensation ... 96

setScaling 97
getScaling 97

getResolution 98
getEncoderType 98
getUom 98

enableErrorChecking 99
getChannelStatus 99
clearErrorsAndWarnings 99
setlLatchDebouncing 100
EnDat methods and functions 101
C++ methods 101
initializeModule 101
getPositions 101
getCounts 102
getWarnings 102
getErrors ... 103
getDiag 103
getDeviceData 104
getDistinguishableRevolutions 104
getEncoderName 105
getEncoderld 105
getSerialNumber 105
setUom 106
getChannelPresence 106
setEncoderinfo 106
C Functions 107
MseEndatModuleCreate 107
MseEndatModuleDelete 107
MseEndatModulelnitialize 107
MseEndatModuleGetNumChannels 108
MseEndatModuleGetChannelPresence 108
MseEndatModuleGetEncoderType 108
MseEndatModuleSetUom 109
MseEndatModuleGetUom 109
MseEndatModuleSetErrorCompensation 109
MseEndatModuleGetErrorCompensation 110
MseEndatModuleSetScaling 110
MseEndatModuleGetScaling 110
MseEndatModuleGetCountingDirection 111
MseEndatModuleGetDistinguishableRevolutions
MseEndatModuleGetResolution 112
MseEndatModuleGetCounts 112
MseEndatModuleGetPositions 113

MseEndatModuleSetRotaryFormat 13
MseEndatModuleGetRotaryFormat 14
MseEndatModuleSetDeviceOffset 114
MseEndatModuleGetDeviceOffset 114
MseEndatModuleSetLatch 115
MseEndatModuleGetLatches 115
MseEndatModuleGetModuleErrorState 116
MseEndatModuleGetModuleErrors 116
MseEndatModuleGetChannelErrorState 116
MseEndatModuleGetEndatErrors 17
MseEndatModuleGetChannelWarningState 17
MseEndatModuleGetEndatWarnings 118
MseEndatModuleClearErrors 118
MseEndatModuleGetEncoderName 118
MseEndatModuleGetEncoderld 119
MseEndatModuleGetEncoderSerialNumber 119
MseEndatModuleSetLatchDebouncing 19
MseEndatModuleEnableDiags 120
MseEndatModuleGetDiags 120
MseEndatModuleGetAdcValues 121
MseEndatModuleEnableErrorChecking 121
2.13 1Vpp methods and functions 122
C++ methods 122
initializeModule 122
getDiag 122
enableAnalogDiag 123
getPositions 123
setUom 124
setEncoderType 124
setLineCount 124
getLineCount 125
getSignalPeriod 125
setSignalPeriod 125
setCountingDirection 126
initAbsolutePosition 126
isReferencingComplete 126
acknowledgeAbsolutePosition 127
getReferencingState 127
getSignalType 127
setSignalType 128
detectSignalType 128
C Functions 128
Mse1VppModuleCreate 128
Mse1VppModuleDelete 128
Mse1VppModulelnitialize 129
Mse1VppModuleGetNumChannels 129
Mse1VppModuleSetEncoderType 129
Mse1VppModuleGetEncoderType 130
Mse1VppModuleSetUom 130
Mse1VppModuleGetUom 130
Mse1VppModuleSetErrorCompensation 131
Mse1VppModuleGetErrorCompensation 131
Mse1VppModuleSetScaling 131
Mse1VppModuleGetScaling 132
Mse1VppModuleSetCountingDirection 132
Mse1VppModuleGetCountingDirection 133
Mse1VppModuleGetResolution 133
Mse1VppModuleGetCounts 133
Mse1VppModuleGetPositions 134
Mse1VppModuleSetRotaryFormat 134
Mse1VppModuleGetRotaryFormat 135
Mse1VppModuleSetDeviceOffset 135

Mse1VppModuleGetDeviceOffset 135
Mse1VppModuleSetlLatch 136
Mse1VppModuleGetlLatches 136
Mse1VppModuleGetModuleErrorState 136
Mse1VppModuleGetChannelErrorState 137
Mse1VppModuleGetChannelStatus 137
Mse1VppModuleClearErrors 138
Mse1VppModuleSetLatchDebouncing 138
Mse1VppModuleEnableDiags 138
Mse1VppModuleGetAdcValues 139
Mse1VppModuleEnableAnalogDiag 139
Mse1VppModuleGetAnalogDiag 139
Mse1VppModuleSetLineCount 140
Mse1VppModuleGetLineCount 140
Mse1VppModuleSetSignalPeriod 140
Mse1VppModuleGetSignalPeriod 141
Mse1VppModuleStartReferencing 141
Mse1VppModuleGetReferencingComplete 141
Mse1VppModuleAcknowledgeAbsolutePosition 142
Mse1VppModuleGetReferencingState 142
Mse1VppModuleEnableErrorChecking 142
Mse1VppGetSignalType 143
Mse1VppSetSignalType 143
Mse1VppDetectSignalType 143

2.14 1/0 methods and functions 144

C++ Methods 144

initializeModule 144
setOutputs 144
setOutput 145
getOutputs 145
getinputs 146
getlO ... 146

C Functions 147

MseloModuleCreate 147
MseloModuleDelete 147
MseloModulelnitialize 147
MseloModuleGetNumChannels 148
MseloModuleGetModuleErrorState 148
MseloModuleGetModuleErrors 148
MseloModuleGetAdcValues 149
MseloModuleClearErrors 149
MseloModuleSetOutputs 149
MseloModuleSetOutput 150
MseloModuleGetOutputs 150
MseloModuleGetlnputs 150
MseloModuleGetlO 151
MseloModuleGetlLatch 151
MseloModuleClearlLatch 151

2.15 Pneumatic methods and functions 152

12

C++ Methods 152

initializeModule 152
getOutput 152
setOutput 152

C Functions 153
MsePneumaticModuleCreate 153
MsePneumaticModuleDelete 153
MsePneumaticModulelnitialize 153
MsePneumaticModuleGetNumChannels 154

MsePneumaticModuleGetModuleErrorState 154
MsePneumaticModuleGetModuleErrors 155
MsePneumaticModuleGetAdcValues 155
MsePneumaticModuleClearErrors 156

MsePneumaticModuleSetOutput 156
MsePneumaticModuleGetOutput 156
MsePneumaticModuleGetLatch 157
MsePneumaticModuleClearLatch 157
2.16 LVDT methods and functions 158

C++ Methods 158
initializeModule 158
getUom 158
setUom 159
getExcitationValues 159
setExcitationVoltage 159
setExcitationFrequency 160
getVoltage 160
getPositions 160

setChannelPresence 161
getChannelPresence 161
getResolution 161
setResolution 162

setDiagnosticsEnabled 162
getFpgaRevision 162

setOversampling 162

getSensorGain 163

setSensorGain 163

teachSensorGain 163

getTeachSensorGainFinished 164
C Functions 164

MseLvdtModuleCreate 164
MselLvdtModuleDelete 164
MseLvdtModulelnitialize 165
MseLvdtModuleGetNumChannels 165
MseLvdtModuleSetUom 165
MselLvdtModuleGetUom 166
MseLvdtModuleSetResolution 166
MseLvdtModuleGetResolution 166
MseLvdtModuleSetScaling 167
MselLvdtModuleGetScaling 167
MseLvdtModuleGetLatch 167
MselLvdtModuleClearlLatch 168
MseLvdtModuleGetModuleErrorState 168
MselLvdtModuleGetModuleErrors 168
MselLvdtModuleEnableDiags 169
MselLvdtModuleGetAdcValues 169
MseLvdtModuleClearErrors 169
MselLvdtModuleGetPositions 170
MseLvdtModuleSetDeviceOffset 170
MselLvdtModuleGetDeviceOffset 171
MseLvdtModuleGetExcitationValues 171
MseLvdtModuleSetExcitationVoltage 172
MseLvdtModuleSetExcitationFrequency 172
MselLvdtModuleGetVoltage 172
MseLvdtModuleSetChannelPresence 173
MselLvdtModuleGetChannelPresence 173
MselLvdtSetDiagnosticsEnabled 173
MselLvdtGetSensorGain 174
MselLvdtSetSensorGain 174
MselLvdtTeachSensorGain 174
MseLvdtGetTeachSensorGainFinished 175
MselLvdtGetFpgaRevision 175
MseLvdtModuleSetOversampling 175
2.17 Analog methods and functions 176
C++ Methods 176
initializeModule 176

getVoltage 176
getCurrent 177
getValues 177
getScaledValues 178
getDiagVoltages 178

setNumSamples 179
setResolution 179
getResolution 179

setOffset 180
getOffset 180
computeResolutionAndOffset 180
setScaling 181
getScaling 181

C Functions 182
MseAnalogModuleCreate 182
MseAnalogModuleDelete 182
MseAnalogModulelnitialize 182
MseAnalogModuleGetNumChannels 183
MseAnalogModuleGetModuleErrorState 183
MseAnalogModuleGetModuleErrors ... 183
MseAnalogModuleGetAdcValues 184
MseAnalogModuleClearErrors 184
MseAnalogModuleGetlLatch 184
MseAnalogModuleClearLatch 185
MseAnalogModuleGet\Voltage 185
MseAnalogModuleGetCurrent 185
MseAnalogModuleGetValues 186
MseAnalogModuleGetScaledValues 186
MseAnalogModuleSetDeviceOffset 187
MseAnalogModuleGetDeviceOffset 187
MseAnalogModuleSetScaling 187
MseAnalogModuleGetScaling 188
MseAnalogModuleGetDiag\Voltages 188
MseAnalogModuleSetNumSamples 188
MseAnalogModuleSetResolution 189
MseAnalogModuleGetResolution 189
MseAnalogModuleSetOffset 189
MseAnalogModuleGetOffset 190
MseAnalogModuleComputeResolutionAndOffset

2.18 TTL methods and functions 191

C++ Methods 191
initializeModule 191
getPositions 191
getCounts 192
setEncoderType 192
setUom 192
setLineCount 193
getLineCount 193
setSignalPeriod 193
getSignalPeriod 194

setCountingDirection 194
setChannelPresence 194
getChannelPresence 195
isReferencingComplete 195
initReferencing 195
acknowledgeReferencing 196

getReferencingState 196
getFpgaRevision 196

C Functions 197
MseTtIModuleCreate 197
MseTtIModuleDelete 197
MseTtIModulelnitialize 197

14

MseTtIModuleGetNumChannels 198
MseTtIModuleSetEncoderType 198
MseTtIModuleGetEncoderType 198
MseTtIModuleSetUom 199
MseTtIModuleGetUom 199
MseTtIModuleSetErrorCompensation 199
MseTtIModuleGetErrorCompensation 200
MseTtIModuleSetScaling 200
MseTtIModuleGetScaling 200
MseTtIModuleSetCountingDirection 201
MseTtIModuleGetCountingDirection 201
MseTtIModuleSetChannelPresence 201
MseTtIModuleGetChannelPresence 202
MseTtIModuleGetResolution 202
MseTtIModuleSetLineCount 202
MseTtIModuleGetLineCount 203
MseTtIModuleSetSignalPeriod 203
MseTtIModuleGetSignalPeriod 203
MseTtIModuleGetCounts 204
MseTtIModuleGetPositions 204
MseTtIModuleSetRotaryFormat 205
MseTtIModuleGetRotaryFormat 205
MseTtIModuleSetDeviceOffset 205
MseTtIModuleGetDeviceOffset 206
MseTtIModuleSetLatch 206
MseTtIModuleGetLatches 206
MseTtIModuleGetModuleErrorState 207
MseTtIModuleGetModuleErrors 207
MseTtIModuleEnableDiags 207
MseTtIModuleGetAdcValues 208
MseTtIModuleClearErrors 208
MseTtIModulelsReferencingComplete 208
MseTtIModuleStartReferencing 209
MseTtIModuleAcknowledgeReferencing 209
MseTtIModuleGetReferencingState 209
MseTtIModuleGetFpgaRevision 210
MseTtIModuleGetChannelErrorState ... 210
MseTtIModuleEnableErrorChecking 210
2.19 Asynchronous methods 211
getAsyncMsgType 211
decodeConnectMsg 211
decodelatchMsg 212
decodeChannelStatusMsg 212
2.20 ModuleConfig Base/Reader/Writer 213
C++ Methods 213
MseConfigBase 213
loadXml 213
reloadXml 213
decodeErrorType 213
decodeElementType 214
getFilename 214
removeSpecificModuleNode 214
MseConfigReader 214
getElement ... 214
getElement ... 215
getElement ... 215
getAllElements 215
validateElements 216
getSpecificModule 216
getSpecificChannel 216
getNumModules 217
getNumChannels 217

MseConfigWriter 217

setElement 217

setElement 218

writeFile 218

writeFile 218

C Functions 219

MseConfigFileCreate 219
MseConfigFileDelete 219
MseConfigFileLoadXml 219
MseConfigFileReloadXml 219
MseConfigFileGetFilename 220
MseConfigFileDecodeErrorType 220
MseConfigFileDecodeElementType 220
MseConfigFileGetElement 221
MseConfigFileGetModuleElement 221
MseConfigFileGetChannelElement 221
MseConfigFileGetAllElements 222
MseConfigFileValidateElements 222
MseConfigFileGetAllElements 222
MseConfigFileGetSpecificModule 223
MseConfigFileGetSpecificChannel 223
MseConfigFileGetNumModules 223
MseConfigFileGetNumChannels 224
MseConfigFileSetModuleElement 224
MseConfigFileSetChannelElement 224
MseConfigFileRemoveModule 225
MseConfigFileWriteFile 225
MseConfigFileWriteNewFile 225

3 System integrity 227

3.1 About system Integrity 228
3.2 Obtaining IP Address 228
3.3 Waiting for Client 228

3.4 Duplicate IP 228

3.5 Programming Error 228
3.6 Ethernet Chip 228

3.7 Current 229

3.8 24V ... 229

3.9 5V ... 229

3.10 3.3V ... 229

3.11 CPU temperature 229
3.12 Non-Volatile Memory Backup Failure 229

4 Diagnostic modes 231

4.1 About Diagnostic Modes 232
4.2 Full ... 232

4.3 Status 232

4.4 Minimal 232

4.5 None 232

5 Trigger line 233

5.1 About the Trigger Line 234
5.2 Software Latency 234
Full Diagnostics 234
Status Diagnostics 234
Minimal Diagnostics 234
5.3 Debouncing Latency 235
5.4 Setting a Trigger 235
5.5 Determining Which Latches are Set 235
5.6 Reading the Latched Data 235
5.7 Clearing a Trigger Manually 235

16

6 Module Networking and Throughput 237

6.1 Overview 238
6.2 Effects onThroughput 238
Pre-conditions: 238
Latching 238
Module conditions: 238
Post-conditions: 239
Operating system context switching 239
Post processing of the received data 239
Timeout 239
6.3 Throughput Test Results 239
Setup 239
Average Send/Receive Time 240
Data Throughput (packets/second) 240
Live Data Throughput (packets/second) 240
Live Data Throughput (channels/second) 240
Oversampling 240
6.4 Latching Throughput Test Results 240

Setup 240
1 Vpp or EnDat base module 240
TTL base module, 240

Results 241
1 Vpp and EnDat base modules 241
TTL base module 241
6.5 Propagation Delay Test Results 241
Setup 241
Results 241
6.6 Example Chain Configurations 241
Large Chain 241
Small Chain 241
Live and Latching with a Base EnDat 241

7 Module descriptions 243

7.1 Power supply modules 244
72 EnDat modules 244

7.3 1Vpp modules 244

74 TTL modules 244

75 LVDT modules 244

76 Analog module 244

7.7 1/0O modules 244

7.8 Pneumatic module 244

8 Operating principles 245

8.1 Overview 246
8.2 Initialization 246

C++ Initialization 246
Non-C++ Initialization 246
8.3 Configuring the Channels 247
1Vpp 247
EnDat 248
TTL ... 248
VDT ... 249
Analog 250
8.4 Channel Operations 251
1Vpp ... 251
EnDat 251
TTL ... 251
VDT ... 252
Analog 252
/O ... 253

Pneumatic 253

17

8.6 Referencing 255
8.7 Module Errors and Warnings 256
8.8 Channel Errors and Warnings 257

EnDat 257

1Vpp 257

TTL ... 257
8.9 Diagnostics 258

1Vpp ... 258

VDT ... 258
8.10 Asynchronous Communication 259
9 C++ examples 261

9.1 Overview 262
9.2 MselibraryCppExamples Visual Studio Solution 262
Broadcasting Example 262
EnDat Example 263
TTL Example 263
1 Vpp Example 263
LVDT Example 263
Analog Example 264
I/O Example 264

Pneumatic Example 264
Latching Example 264
Referencing Example 264

Referencing a 1Vpp Coded Rotary Encoder Example 265
Referencing a TTL Coded Encoder Example 265
Module Discovery Example 265
Module Subscribe Example 265
Programming MSEfirmware Example 265
ModuleConfig Read and Write Example 266
LVDT Teach Gain Example 266

9.3 Initializing the module chain 267
Creating a Chain via Broadcasting 267
Creating a Chain Manually 268

9.4 Getting counts 269

9.5 Setting the Encoder Information 270

9.6 Latching 272

9.7 Referencing 1Vpp Linear Encoder 274

9.8 Programming Firmware 276

9.9 MseConfigReader 277

10 C examples 279

10.1 Qverview 280
10.2 MSElibraryCExamples Visual Basic Solution 280
Module Examples 280
Broadcasting Example 280
Async Example 280
Subscribe Example 280
Config File Example 280
Setting the IP Address Example 280
Programming the Firmware and Bootloader Example 280
10.3 Initialize, Configure, and Get Positions from a 1Vpp Module 281

11 Visual Basic examples 285

11.1 Overview 286

11.2 Module Throughput Test 286
11.3 Chain Throughput Test 286
11.4 LatchingTest 286

11.5 Voltage Diagnostics 287

12 Delphi examples 289
12.1 Overview 290

18

13

13.1
13.2
13.3

13.4 MSElabview DAQ utility explanation and operating instructions

LabVIEW 291

Introduction 292

Installation 292

LabVIEW VI's and corresponding MSElibrary functions
MSElibrary1VppWrapperVl.Ivliib 293
MSElibraryAnalogWrapperVI.Ivlib 294
MSElibraryConfigFileWrapperVis.Ivlib 294
MSElibraryEndatWrapperVis.Ivlib 295
MSElibraryPneumaticWrapperVis.Ivlib 295
MSElibraryloWrapperVis.Ivlib 296
MSElibraryLvdtWrapperVis.Ivlib 296
MSElibraryModuleWrapperVis.Iviib 297
MSElibraryTtlWrapperVis.lvlib 298

..... 293

..... 299

19

20

Ethernet cable

1.1 Ethernet cable

A MDI-X enabled router, switch, or network interface card (NIC) is required to utilize a straight through Catb Ethernet cable. If
not using a MDI-X device a crossover cable is required.

1.2 Initial IP address

Each module defaults to DHCP If a DHCP server is not found, the static IP address of 172.31.46.1 is used for each non power
supply module. The power supply module defaults to 172.31.46.2. This will cause an IP conflict until the static IP addresses of
the modules are changed.

1.3 Changing a modules IP address

The IP address of each non power supply module defaults to 172.31.46.1. The port is always 27015. Communication to the
MSE wiill fail if the IP address for each module in the chain has not been changed to a unique value.

Do not plug or unplug modules under power.
Damage may occur to internal components.

To configure a unique IP address for each module in a chain:

Power off the MSE

Unplug all modules in the chain

Connect the base module to the power supply module

Power up the MSE

Change the base module to a unique IP address following the example below
Power off the MSE

Add a new module

Power up the base module and the module added in the previous step

Change the IP address of the new module following the example below

v Vv Vv VvV VvV VvV VvV Vv v Vv

Repeat this process until all modules in the chain have been configured with a unique IP address

20 Configuring the MSE 1000

C++ example
Change IP address:

4

Include the headers and instantiate the Mselnterface class.

#include “MselInterface.h”
MselInterface mse;

Create the MSE chain by calling createChain() with the IP address and base port to use for the client PC (this is what

the MSE modules will use for responses).
MseResults retVal = mse.createChain(“172.31.46.3”7,27016,false, “255.255.255.0");
if (RESPONSE OK != retVal.getCode())

std::cout << “handle error” << std::endl;
Get a reference to the desired module to change the IP address
MseModule* module = mse.getModule (0) ;
if (0 == module)

std::cout << “handle error” << std::endl;
Change the IP address and netmask
retVal = module->setIp(“172.31.46.4”, “255.255.255.0");
if (RESPONSE OK != retVal.getCode())

std::cout << “handle error” << std::endl;

Reset the module and wait for it to complete

module->resetMsel000 () ;
// Sleep for 10 seconds

Recreate the chain because the UDP connections have changed
MseResults retVal = mse.createChain(“172.31.46.3”7,27016,false, “255.255.255.0");

if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;

HEIDENHAIN MSElibrary

21

Changing a modules IP address

§ 1.4 Changing DHCP

The MSE modules are configured for DHCP If a DHCP server is not found during startup, the modules will default to the IP
O configured in Changing a modules IP address. If DHCP is not needed, the time needed to look for a DHCP server can be
) eliminated by disabling DHCP. Modules that have DHCP disabled can be re-enabled.

c

o If there is no DHCP server the PC using the

c library should have its network card connected
2 to the 172.31.46 domain. Do not use an IP

&) address that is the same as one set in the

Changing a modules IP address section..

To disable DHCP:
» Include the headers and instantiate the Mselnterface class.

#include “Mselnterface.h”
MseInterface mse;

» Create the MSE chain by calling createChain() with the IP address and base port to use for the client PC (this is what
the MSE modules will use for responses).

MseResults retVal = mse.createChain(“172.31.46.3”7,27016,false, “255.255.255.07);
if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;
» Get areference to the desired module to change the DHCP usage
MseModule* module = mse.getModule (0) ;
if (0 == module)
std::cout << “handle error” << std::endl;
retVal = module->setDhcp (0) ;
if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;
// Repeat for each module in the chain

» Reset the module and wait for it to complete

module->resetMsel000 () ;
// Sleep for 10 seconds

» Recreate the chain after the DHCP settings have changed
MseResults retVal = mse.createChain(“172.31.46.3”7,27016,false, “255.255.255.07);

if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;

22 Configuring the MSE 1000

General information

2.1 General information

Functions are provided for accessing MSE modules from a software application. This group of functions is supplied as a DLL
for Microsoft Windows systems.

The following operating systems are supported:
e Windows XP
e \Windows Vista
e \Windows 7

The MSElibrary is compiled for a 32 bit processor and can be used on 64 bit Windows Vista and 64 bit Windows 7 machines.

In addition to the libraries, header files that enable the functions to be integrated into C/C++ programs are supplied. To create
a program, the library must be incorporated into the project. This document groups the C++ and C functions in their own sec-
tions and refers to the C++ member functions as methods for clarity. Refer to “C++ examples” on page 263 and “Creating

a Chain Manually” on page 270.

LabVIEW VI wrappers and an example are provided with MSElibrary. Refer to “LabVIEW" on page 293.

2.2 Installation instructions

The MSElibrary has been tested with Microsoft Visual Basic 6.0, Microsoft Visual Basic 2010, LabVIEW 2012, and Delphi XE3
to show compatibility with C applications.

The MSElibrary Installer saves the tools needed to use the library in the MSElibrary directory and the user’s document direc-
tory.

Operating system MSElibrary directory
Windows XP 32 bit "C:\Program files\HEIDENHAIN"
Windows Vista 32 bit "C:\Program files\HEIDENHAIN"
64 bit “C:\Program files (x86)\HEIDENHAIN"
Windows 7 32 bit “C:\Program files\HEIDENHAIN"
64 bit “C:\Program files (x86)\HEIDENHAIN"
Operating system Users document directory
Windows XP 32 bit “C:A\Documents and Settings\CurrentUseAMy Documents\HEIDENHAIN"
Windows Vista 32 bit, 64 bit "C:\Users\CurrentUseAMy Documents\HEIDENHAIN"
Windows 7 32 bit, 64 bit “C:A\Users\CurrentUseAMy Documents\HEIDENHAIN"

“C:\Program Files” and “C:\Program Files (x86)" are write protected folders in Windows 7, requiring the configurable data to
be stored in the user's data directory.

“C:\Program Files\HEIDENHAIN\MSElibrary” or “C:\Program Files (x86)\HEIDENHAIN\MSElibrary” folder contains:

File Description

MSElibrary.lib The .lib file required when linking against the library. The MSElibrary.lib file has the stubs needed
to call the functions in the dll.

MSElibrary.dll The .dll file is needed during runtime. This is where the functions linked against are located.

QtCore4.dll The .dll file needed for using the core Qt methods. Qt is used for the XML reader and writer.

QtXml4.dll The .dll file needed for using the Qt XML methods.

"“\Docs"” The "\Docs" directory contains this file.

“\Headers" The “\Headers" folder contains the MSElibrary headers for including into source code to utilize

the Mselibrary.

“C:A\Documents and Settings\CurrentUseAMy Documents\HEIDENHAIN\MSElibrary” or
“C:A\Users\CurrentUsenAMy Documents\HEIDENHAIN" folder contains:

Folder Description

“\Examples” The "\Examples" folder contains the “\C++" "\C" “Delphi’ “LabVIEW' and “VisualBasic" sub-
folders. The “\C++" subfolder contains the C++ MSElibraryCppExample.sIn VisualStudio 2010
example solution and source code. The “\C"” subfolder contains the C++ MSElibraryCExample.
sIn VisualStudio 2010 example solution and source code. The MSElibraryCExample.sin utilizes
the VisualStudio 2010 C++ compiler but makes C function calls into the MSElibrary.dll to show
how the C wrappers are used. The “\Delphi” subfolder contains the Delphi Mse.dproj XE3
example project and source code. The “\LabVIEW" subfolder contains the LabVIEW “LabView
MSE 1000 DAQ Utility v100.lvproj” example project and Vis. The “\VisualBasic” subfolder con-
tains the VisualBasic MSEtestbed.sIn VisualStudio 2010 example solution and source code.

“\LabVIEW" The "\LabVIEW" folder contains the LabVIEW VI's that are needed to interface with the MSEli-
brary.dll.

24 Library software

2.3 Overview

This document is a guide for using the MSElibrary. This document covers the basics needed for initializing the interface to the
MSE, setting the encoder parameters, getting counts and positions, programming the firmware, and setting the IP address
for the modules.

Modules

The MSElibrary uses a common design for the base of all the modules. This allows for re-use of most commands as well as
the UDP

10/100 Ethernet

Power Supply

EnDat Base Module 1/0 Module

10/100 Ethernet 10/100 Ethernet

(o)

10/100 Ethernet ~ 10/100 Ethernet

O

Power Out Power In

Output Input

Power Out Power In Power Out

)
NS
a
NS
)
&
O> EnDat 4 Axis Module EnDat 8 Axis Module
10/100 Ethernet 10/100 Ethernet 10/100 Ethernet 10/100 Ethernet 10/100 Ethernet
O
Output Input Output Input Output
3\
O
Power In Power Out Power In Power Out Power In Power Out
Module component diagram
Definitions
MSE Chain Refers to all of the modules in the MSE arrayed sequentially starting from an index of 0.
Prerequisites

The MSElibrary example code requires Microsoft Windows compatible development tools and has been verified with Micro-
soft Visual Studio 2010.

Methods and functions

Most of the methods and functions in the MSElibrary (MSElibrary.dll) are made available to the user of the library. This docu-
ment describes the methods and functions for using the library.

The MSElibrary is written in C++. There are C wrappers for all of the necessary C++ methods in order to expose the calls as
C functions. The C wrappers allow programs such as Visual Basic, Delphi, and LabVIEW to utilize the MSElibrary.

HEIDENHAIN MSElibrary 25

Overview

3 Classes
.2 UdpComm
>
S
()]
>
O —comm_ Mselnterface MseConfigBase
MseProgramming comm._ MseComm T
-programming_ MseConfigReader
-mogileChain_
ModuleData MseModule MseloModule
-moduleData_ N
MseConfigWriter
T MseAnalogModule
CEIED MseDeviceModule
Encoderinfo
-encoderinfo_
«structy _deviceData | MseEndatModule Mse1VppModule MseTtiModule MseLvdtModule
DeviceData -
Basic class diagram
Class Description
UdpComm The UdpComm class is used for the operating system specific UDP code.
MseComm The MseComm class has the common UDP implementation as well as the
commands for setting the IP address and enabling or disabling DHCP for the
module.
MseModule The MseModule class is derived from the MseComm class. The MseModule

MseDeviceModule

MseEndatModule

Mse1VppModule

MseloModule

MsePneumaticModule

MseAnalogModule

MselLvdtModule

MseTtIModule

Mselnterface

MseConfigBase

26

class has methods for determining the module’s type, getting the number of
channels and getting the counts. The MseModule class also contains a class
used for programming the firmware of a module. The initialization of an Mse-
Module object will connect to a module over UDP and retrieve all of the informa-
tion from the module and store it.

The MseDeviceModule class is derived from MseModule and has functionality
specific to modules with encoders including scaling and retrieving position data.

The MseEndatModule class is derived from MseDeviceModule and has EnDat
specific initialization and functionality including warning, error, and device.

The Mse1VppModule class is derived from MseDeviceModule and is used in
case 1Vpp specific functionality is needed.

The MseloModule class is derived from MseModule and has functionality spe-
cific to modules with input and output functionality.

The MsePneumaticModule class is derived from the MseModule and has func-
tionality specific to modules with pneumatic control functionality.

The MseAnalogModule class is derived from MseModule and has functionality
specific to modules with analog functionality

The MselLvdtModule class is derived from MseDeviceModule and has function-
ality specific to modules with LVDT functionality.

The MseTtIModule class is derived from the MseDeviceModule and has func-
tionality specific to modules with TTL functionality.

The Mselnterface is the main class used for access of all the MSE features. It
provides the ability to create a chain of modules that can be accessed without
having to manually instantiate objects and create separate arrays. It is possible
to skip using Mselnterface and manually instantiate and use any of the exposed
library calls of other classes.

The MseConfigBase class is a base class used by the MseConfigReader that
contains the MSE_XML_RETURN and MSE_XML_ELEMENTS enumerations as
well as the methods needed for loading the XML file into memory and decoding
the enumerations.

Library software

MseConfigReader

MseConfigWriter

Wrappers

The MseConfigReader is derived from the MseConfigBase class. This class is
used for reading from the ModuleConfig.xml file that is generated from the
MSEsetup application.

The MseConfigWriter is derived from the MseConfigReader class. This class is
used for writing to the ModuleConfig.xml file that is generated from the MSE-
setup application. The MseConfigWriter is derived from the MseConfigReader
class for convenience in order to utilize read functions without having to instanti-
ate two separate classes.

There are 9 header files that contain the C functions that are used to access the library from C applications. The C functions
cannot use inheritance and so must have their own calls into the base classes.

MseModuleWrapper
MseEndatModuleWrapper

Mse1VppModuleWrapper
MseloModuleWrapper
MsePneumaticModuleWrapper
MseConfigFileWrapper
MseAnalogModuleWrapper
MseTtIModuleWrapper

MselLvdtModuleWrapper

Module Communication

Provides functions to access the C++ methods that are common to all modules.

Provides functions to access the C++ methods that are specific to the EnDat
module.

Provides functions to access the C++ methods that are specific to the 1Vpp
module.

Provides functions to access the C++ methods that are specific to the 1/O
module.

Provides functions to access the C++ methods that are specific to the pneu-
matic module.

Provides functions to access the C++ methods that are specific to the configu-
ration file reader and writer.

Provides functions to access the C++ methods that are specific to the analog
module.

Provides functions to access the C++ methods that are specific to the TTL
module.

Provides functions to access the C++ methods that are specific to the LVDT
module.

The modules use UDP for network communication. UDP is non-guaranteed communication. If a message is missed, it can be
resent after the timeout period. The timeout period can be modified with the setUdpTimeout method.

The MSElibrary is not threadsafe. This means that multiple threads should not call MSElibrary methods or functions at the

same time.

HEIDENHAIN MSElibrary

27

Overview

(7))
o
S
-
1]
et
(1]
(o]

2.4 DataTypes

The following table shows the size of the data types used in the MSElibrary. Calls into the library must make sure that the

parameters and return types match the size of the data type.

Name

Enumeration (like UOM and MODULE_ID)

char

unsigned char

short

unsigned short

int

unsigned int

long

unsigned long

bool

double
Mse1VppModulePtr
MseAnalogModulePtr
MseConfigFilePtr
MseEndatModulePtr
MseloModulePtr
MseLvdtModulePtr
MseModulePtr

MsePneumaticModulePtr

MseTtIModulePtr

28

Size

signed 32 bit integer (4 bytes)
signed 8 bit integer (1 byte)
unsigned 8 bit integer (1 byte)
signed 16 bit integer (2 bytes)
unsigned 16 bit integer (2 bytes)
signed 32 bit integer (4 bytes)
unsigned 32 bit integer (4 bytes)
signed 32 bit integer (4 bytes)
unsigned 32 bit integer (4 bytes)

8 bit integer (1 byte)

64 bit floating point number (8 bytes)
signed 32 bit integer (4 bytes)
signed 32 bit integer (4 bytes)
signed 32 bit integer (4 bytes)
signed 32 bit integer (4 bytes)

(

(

(

(

signed 32 bit integer (4 bytes)

signed 32 bit integer (4 bytes)

signed 32 bit integer (4 bytes)

signed 32 bit integer (4 bytes)
()

signed 32 bit integer (4 bytes

Library software

2.5 Enumerations

MSE_CHAIN_CREATION_STATE
The MSE_CHAIN_CREATION_STATE enumeration is used to determine the state of the createChain method.

Enumeration
MSE CHAIN CREATION STATE

{
MSE_CHAIN CREATION IDLE = 0,
MSE_CHAIN CREATION START,
MSE_CHAIN CREATION ORDERING,
MSE_CHAIN CREATION FINISHED,
MSE_CHAIN CREATION FAILED

}i

Parameters

MSE_CHAIN_CREATION_IDLE The chain creation has not started

MSE_CHAIN_CREATION_START The broadcast is binding to a socket, sending out the UDP_OPEN broadcast, and
receiving responses to the UDP_OPEN command on the bound socket

MSE_CHAIN_CREATION_ORDER- The responses have been received and the modules are being ordered based on

ING control of the output/input pins
MSE_CHAIN_CREATION_FIN- The chain creation has finished successfully
ISHED

MSE_CHAIN_CREATION_FAILED The chain creation has failed

UOM

The UOM enumeration specifies the unit of measurement for the position.

Enumeration
UOM

UOM UNDEFINED = 0,
UOM RAW COUNTS,
UOM_INCHES,

UOM MM,

UOM DEGREES,
UOM_COUNT

Parameters
UOM_UNDEFINED =0 Undefined unit of measurement
UOM_RAW_COUNTS Raw counts from a device

UOM_INCHES Inches

UOM_MM Millimeters

UOM_DEGREES Decimal degrees

UOM_COUNT The number of values in the enumeration

HEIDENHAIN MSElibrary 29

Enumerations

Enumerations

MODULE_ID

The MODULE_ID enumeration specifies the module ID for the module. The module ID can also be found on the module
casing and can be retrieved with the showModuleld() method from the MseModule. The showModuleType() method can be
used to show the type that is on the module casing.

Enumeration

30

MODULE ID

MODULE ID NONE
MODULE ID ENDAT BASE
MODULE ID ENDAT BASE IP40
MODULE ID 1VPP BASE
MODULE ID 1VPP BASE IP40
MODULE ID PS 120 IP40
MODULE ID PS 120 IP65
MODULE ID PS 24
MODULE ID PS 24 IP40
MODULE ID ENDAT 4X
MODULE ID ENDAT 4X IP40
MODULE ID ENDAT 8X
MODULE ID ENDAT 8X IP40
MODULE ID 1VPP 4X
MODULE ID 1VPP 4X IP40
MODULE ID 1VPP 8X
MODULE ID 1VPP 8X IP40
MODULE ID IO IP40
MODULE ID IO IP65
MODULE ID PNEUMATIC
MODULE ID PNEUMATIC IP40
MODULE ID ANALOG
MODULE ID ANALOG IP40
MODULE ID TTL BASE
MODULE ID TTL BASE IP40
MODULE ID TTL 4X
MODULE ID TTL 4X IP40
MODULE ID TTL 8X
MODULE ID TTL 8X_ IP40
MODULE ID HBT
MODULE ID HBT IP40
MODULE_ID VLDT
MODULE ID VLDT IP40
MODULE_ID LVDT
MODULE ID LVDT IP40

0x000000,
74749901,
74749902,
74750001,
74750002,
74750101,
74750102,
74750201,
74750202,
74750301,
74750302,
74750401,
74750402,
74750501,
74750502,
74750601,
74750602,
74750701,
74750702,
74750801,
74750802,
74750901,
74750902,
74751101,
74751102,
74751201,
74751202,
74751301,
74751302,
74751401,
74751404,
74751402,
74751405,
74751403,
74751406

Library software

Parameters
MODULE_ID_NONE

MODULE_ID_ENDAT_BASE

= 0x000000
= 74749901

MODULE_ID_ENDAT_BASE_IP40 = 74749902

MODULE_ID_1VPP_BASE

MODULE_ID_1VPP_BASE_IP40

MODULE_ID_PS_120_IP40
MODULE_ID_PS_120_IP65
MODULE_ID_PS_24
MODULE_ID_PS_24_1P40
MODULE_ID_ENDAT_4X

MODULE_ID_ENDAT_4X_IP40

MODULE_ID_ENDAT_8X

MODULE_ID_ENDAT_8X_IP40

MODULE_ID_1VPP_4X

MODULE_ID_1VPP_4X_IP40

MODULE_ID_1VPP_8X

MODULE_ID_1VPP_8X_IP40

MODULE_ID_IO_IP40
MODULE_ID_IO_IP65
MODULE_ID_PNEUMATIC

MODULE_ID_PNEUMATIC_IP40

MODULE_ID_ANALOG

MODULE_ID_ANALOG_IP40

MODULE_ID_TTL_BASE

MODULE_ID_TTL_BASE_IP40

MODULE_ID_TTL_4X
MODULE_ID_TTL_4X_IP40
MODULE_ID_TTL_8X
MODULE_ID_TTL_8X_IP40
MODULE_ID_HBT

MODULE_ID_HBT_IP40

MODULE_ID_VLDT

MODULE_ID_VLDT_IP40

MODULE_ID_LVDT

MODULE_ID_LVDT_IP40

HEIDENHAIN MSElibrary

= 74750001
= 74750002
= 74750101

= 74750102
= 74750201
= 74750202
= 74750301
= 74750302
= 74750401
= 74750402
= 74750501
= 74750502
= 74750601
= 74750602
= 74750701
= 74750702
= 74750801
= 74750802
= 74750901
= 74750902
= 74751101

= 74751102
= 74751201

= 74751202
= 74751301

= 74751302
= 74751401

= 74751404

= 74751402

= 74751405

= 74751403

= 74751406

Default case, Only should happen if no firmware is loaded

EnDat module with Ethernet, serial, and 4 channels. IP65 version.

EnDat module with Ethernet, serial, and 4 channels. IP40 version.

1 Vpp module with Ethernet, serial and 4 channels. IP65 version.
1 Vpp module with Ethernet, serial and 4 channels. IP40 version.
120/240 Vac Power Supply. IP40 version.

120/240 Vac Power Supply. IP65 version.

24 \/dc Power Supply. IP65 version.

24 \V/dc Power Supply. IP40 version.

EnDat module with 4 channels. IP65 version.

EnDat module with 4 channels. IP40 version.

EnDat module with 8 channels. IP65 version.

EnDat module with 8 channels. IP40 version.

1 Vpp module with 4 channels. IP65 version.

1 Vpp module with 4 channels. IP40 version.

1 Vpp module with 8 channels. IP65 version.

1 Vpp module with 8 channels. IP40 version.

I/O module. IP40 version.

I/O module. IP65 version.

Pneumatic. IP65 version.

Pneumatic. IP40 version.

Analog module. IP65 version.

Analog module. IP40 version.

TTL module with Ethernet, serial, and 4 channels. IP65 version.
TTL module with Ethernet, serial, and 4 channels. IP40 version.
TTL module with 4 channels. IP65 version.

TTL module with 4 channels. IP40 version.

TTL module wih 8 channels. IP65 version.

TTL module wih 8 channels. IP40 version.

LVDT module with 8 channels for Solatron compatible half bridge
sensors . |IP65 version.

LVDT module with 8 channels for Solatron compatible half bridge
sensors. |IP40 version.

VLDT module with 8 channels for Mahr compatible VLDT (Very
Linear Differential Transducer) sensors . IP65 version.

VLDT module with 8 channels for Mahr compatible VLDT (Very
Linear Differential Transducer) sensors. IP40 version.

LVDT module with 8 channels for Marposs compatible full bridge
sensors. IP65 version.

LVDT module with 8 channels for Marposs compatible full bridge
sensors. IP40 version.

31

Enumerations

Enumerations

ENDAT_ERROR_RESULT

The ENDAT_ERROR_RESULT enumeration is for the error and warning values specific to the EnDat encoders that can be
obtained from the MSE over UDP.

Enumeration

ENDAT ERROR RESULT
{

Parameters

EET_OK =0

EET_BAD
EET_NOT_SUPPORTED
EET_COUNT

ENDAT_ERRORS
The ENDAT_ERRORS enumeration is for the EnDat errors.

Enumeration

ENDAT ERRORS

i

Parameters

ENDAT_ERRORS_LIGHT=0

EET OK = 0,

EET BAD,

EET NOT SUPPORTED,
EET COUNT

There is currently no error or warning
There is currently an error or warning
The warning or error information is not supported

The number of values in the enumeration

ENDAT ERRORS LIGHT,
ENDAT ERRORS SIGNALAMP,
ENDAT ERRORS POSVALUE,
ENDAT ERRORS OVERVOLT,
ENDAT ERRORS UNDERVOLT,
ENDAT ERRORS_ OVERCUR,
ENDAT ERRORS BATTERY

Light

ENDAT_ERRORS_SIGNALAMP Signal amplitude
ENDAT_ERRORS_POSVALUE Position value
ENDAT_ERRORS_OVERVOLT Over voltage
ENDAT_ERRORS_UNDERVOLT Under voltage
ENDAT_ERRORS_OVERCUR Over current

ENDAT_ERRORS_BATTERY

NUM_ENDAT_ERRORS
The NUM_ENDAT_ERRORS enumeration is for the number of ENDAT errors that are enumerated in ENDAT_ERRORS.

Enumeration

32

NUM _ENDAT ERRORS = 7;

Battery

Library software

ENDAT_WARNINGS

The ENDAT_WARNINGS enumeration is for the EnDat warning.

Enumeration
ENDAT WARNINGS
{

ENDAT WARNING FREQCOLLISION = O,
ENDAT WARNING TEMPEXCEEDED,
ENDAT WARNING LIGHT RESERVE,
ENDAT WARNING BATTERYCHARGE,
ENDAT WARNING TRAVERSEREFPT

Parameters

ENDAT_WARNING_FREQCOLLISION =0 Frequency Collision
ENDAT_WARNING_TEMPEXCEEDED Temperature warning range has been exceeded
ENDAT_WARNING_LIGHTREVERSE Light source control reserve
ENDAT_WARNING_BATTERYCHARGE Battery charge
ENDAT_WARNING_TRAVERSEREFPT Traverse Reference Point

NUM_ENDAT_WARNINGS

The NUM_ENDAT_WARNINGS enumeration is the number of ENDAT warnings that are enumerated in ENDAT_WARNINGS.

Enumeration
NUM ENDAT WARNINGS = 5;

ENDAT_DIAG

The ENDAT_DIAG enumeration is for the EnDat diagnostic. The getDiag method of the MseEndatModule class fills in the pa-
rameter diagVals with an array of unsigned chars. This array can be indexed by this enumeration to access the desired EnDat

diagnostic value.

Enumeration

ENDAT DIAG ABS TRACK SUPPORTED,
ENDAT DIAG ABS TRACK VALUE,

ENDAT DIAG INC TRACK SUPPORTED,
ENDAT DIAG INC_TRACK VALUE,

ENDAT DIAG POS VAL CALC_ SUPPORTED,
ENDAT DIAG POS VAL CALC VALUE,
ENDAT DIAG POS VAL CALC_ MIN,

ENDAT DIAG
{
ENDAT DIAG ABS TRACK MIN,
ENDAT DIAG_INC_TRACK MIN,
ENDAT DIAG_COUNT
b
Parameters

ENDAT_DIAG_ABS_TRACK_SUPPORTED

ENDAT_DIAG_ABS_TRACK_VALUE
ENDAT_DIAG_ABS_TRACK_MIN
ENDAT_DIAG_INC_TRACK_SUPPORTED

ENDAT_DIAG_INC_TRACK_VALUE
ENDAT_DIAG_INC_TRACK_MIN
ENDAT_DIAG_POS_VAL_CALC_SUPPORTED
ENDAT_DIAG_POS_VAL_CALC_VALUE

ENDAT_DIAG_POS_VAL_CALC_MIN

ENDAT_DIAG_COUNT

HEIDENHAIN MSElibrary

Absolute tracking function reserves supported. This value will be
either EET_OK or EET_NOT_SUPPORTED which are members of
the ENDAT_ERROR_RESULT enumeration.

Absolute tracking function reserves value
The minimum recorded absolute tracking function reserve value

Incremental tracking function reserves supported. This value will
be either EET_OK or EET_NOT_SUPPORTED which are members
of the ENDAT_ERROR_RESULT enumeration.

Incremental tracking function reserves value

The minimum recorded incremental tracking function reserve
value

Position value calculation function reserves supported. This value
will be either EET_OK or EET_NOT_SUPPORTED which are mem-
bers of the ENDAT_ERROR_RESULT enumeration.

Position value calculation function reserves value

The minimum recorded position value calculation function reserve
value

The number of values in the enumeration

33

Enumerations

Enumerations

MSE_RESPONSE_CODE
The MSE_RESPONSE_CODE enumeration is for the error and warning values that can be obtained from the MSE over UDP.

Enumeration

MSE_RESPONSE_CODE
{
RESPONSE _OK = 0,
RESPONSE_TIMEOUT,

RESPONSE_TYPE INVALID,
RESPONSE RANGE MODULE INVALID,
RESPONSE_TYPE MISMATCH,

RESPONSE PARAMETER COUNT ZERO,
RESPONSE PARAMETER COUNT MISMATCH,
RESPONSE PARAMETER SEND SIZE MISMATCH,
RESPONSE PARAMETER SIZE MISMATCH,
RESPONSE PARAMETER INVALID CHANNEL,
RESPONSE BROADCAST SEND FAILED,
RESPONSE BROADCAST NO RESPONSE,
RESPONSE_UDP_SOCKET BIND FAILED,
RESPONSE_UDP_SERVER CREATION FAILED,
RESPONSE UDP_READ FLUSH FAILED,
RESPONSE_UDP_SEND FAILED,

RESPONSE UDP_READ FAILED,
RESPONSE_UDP_RECV_PORT INVALID,
RESPONSE ASYNC_RECV_FAILED,
RESPONSE DOWNLOAD ENDED OK,
RESPONSE _COMM NOT INITIALIZED,
RESPONSE_MODULE_NOT INITIALIZED,
RESPONSE IP ALREADY USED,

RESPONSE MODULE_ALREADY CREATED,
RESPONSE_IP MALFORMED,

RESPONSE NETMASK MALFORMED,
RESPONSE_IP MISMATCH,

RESPONSE PROGRAM FILE PREPARE FAILED,
RESPONSE_MODULE_NULL,

RESPONSE MODULE_MISMATCH,

RESPONSE MODULE_NOT CONNECTED,
RESPONSE MODULE_FIRST NOT FOUND,
RESPONSE POINTER PARAMETER NULL,
RESPONSE_RANGE_ERROR,

RESPONSE FRAM ERROR,

RESPONSE _FILE OPEN FAILED,
RESPONSE _FILE READ ERROR,
RESPONSE_MODULE_NOT IN BOOTLOADER,

RESPONSE ERROR,

RESPONSE_INVALID REVISION,
RESPONSE_INVALID IMAGE,

RESPONSE CHECKSUM FAILED,
RESPONSE FIRMWARE NOT LOADED,
RESPONSE_CANT PROGRAM WHILE DHCP,

RESPONSE COUNT

Parameters

34

RESPONSE_OK =0
RESPONSE_TIMEOUT
RESPONSE_TYPE_INVALID
RESPONSE_RANGE_MODULE_INVALID
RESPONSE_TYPE_MISMATCH

RESPONSE_PARAMETER_COUNT_ZERO

RESPONSE_PARAMETER_COUNT_MISMATCH

RESPONSE_PARAMETER_SEND_SIZE_MISMATCH
RESPONSE_PARAMETER_SIZE_MISMATCH
RESPONSE_PARAMETER_INVALID_CHANNEL

Used to represent a good response

A timeout occurred waiting for the response
An invalid response type was received

A module was requested that is out of range

A response type different from what was expected was
received

The number of parameters received is zero but this is not
what was expected

The number of parameters received does not match what
was expected

The command to send was passed in invalid data
The size of the data received is not what was expected

The channel received is not what was expected

Library software

RESPONSE_BROADCAST_SEND_FAILED

RESPONSE_BROADCAST_NO_RESPONSE
RESPONSE_UDP_SOCKET_BIND_FAILED
RESPONSE_UDP_SERVER_CREATION_FAILED
RESPONSE_UDP_READ_FLUSH_FAILED
RESPONSE_UDP_SEND_FAILED
RESPONSE_UDP_READ_FAILED
RESPONSE_UDP_RECV_PORT_INVALID
RESPONSE_ASYNC_RECV_FAILED
RESPONSE_DOWNLOAD_ENDED_OK

RESPONSE_COMM_NOT_INITIALIZED
RESPONSE_MODULE_NOT_INITIALIZED
RESPONSE_IP_ALREADY_USED
RESPONSE_MODULE_ALREADY_CREATED
RESPONSE_IP_MALFORMED
RESPONSE_NETMASK_MALFORMED
RESPONSE_IP_MISMATCH

RESPONSE_PROGRAM_FILE_PREPARE_FAILED
RESPONSE_MODULE_NULL

RESPONSE_MODULE_MISMATCH

RESPONSE_MODULE_NOT_CONNECTED

RESPONSE_MODULE_FIRST_NOT_FOUND
RESPONSE_POINTER_PARAMETER_NULL
RESPONSE_RANGE_ERROR
RESPONSE_FRAM_ERROR
RESPONSE_FILE_OPEN_FAILED
RESPONSE_FILE_READ_ERROR
RESPONSE_MODULE_NOT_IN_BOOTLOADER
RESPONSE_ERROR
RESPONSE_INVALID_REVISION
RESPONSE_INVALID_IMAGE
RESPONSE_CHECKSUM_FAILED
RESPONSE_FIRMWARE_NOT_LOADED
RESPONSE_CANT_PROGRAM_WHILE_DHCP

RESPONSE_COUNT

HEIDENHAIN MSElibrary

The broadcast command could not be sent out the network
correctly

Broadcast failed to get a response

The binding of the UDP socket failed.

The creation of the UDP server failed

The flush of the UDP read buffer failed

The sending of the UDP datagram failed

The reading of the UDP datagram failed

The UDP port for receiving MSE responses is invalid
Currently not utilized

Used to distinguish from a RESPONSE_OK, because down-
loading the program requires multiple segments

The communication to the module has not been initialized
The module data has not been initialized

The IP address is used by another module

The module cannot be created twice

The IP address is not in the correct format

The netmask is not in the correct format

The IP address in the return packet does not match the mod-
ule that sent the command

The file preparation for the programming of the module failed

A NULL pointer was returned when trying to request a
module

The module requested is not the same as the one in the
MSE

The IS_CONNECT_IN_SET pin used for ordering the modules
after a broadcast did not go high when expected

The first module could not be identified

A NULL pointer was passed into a function
A parameter value is out of range

The FRAM request returned an error

The file requested could not be opened
The file requested could not be read

The module is not in the bootloader

An unknown error

The revision of the firmware is invalid

The image selected for programming a module is invalid
The checksum has failed

The firmware is not loaded in the module

The bootloader and firmware cannot be programmed while a
module is configured for DHCP

The number of values in the enumeration

35

Enumerations

Enumerations

LATCH_OPTIONS
The LATCH_OPTIONS enumeration is used to select the latching option.
Enumeration
LATCH_OPTIONS
{
LATCH_COUNT SET = 0,
LATCH _COUNT RESET
}i
Parameters
LATCH_COUNT_SET The latching is set (activated)
LATCH_COUNT_RESET The latching is reset (deactivated)

LATCH_CHOICE

The LATCH_CHOICE enumeration is used to select the latch to trigger. There are 5 latch lines. The first 3 are used for
software latches. The last 2 are for the footswitches. The footswitch lines can be simulated with a software command. The
enumeration LATCH_CHOICE_ALL is currently used as a way to clear all latches at one time with the setLatch method.

Enumeration
LATCH CHOICE

LATCH CHOICE SOFTWARE 1 = 0,
LATCH CHOICE SOFTWARE 2,
LATCH CHOICE SOFTWARE 3,
LATCH CHOICE FOOTSWITCH 1,
LATCH CHOICE FOOTSWITCH 2,
LATCH CHOICE ALL,
LATCH CHOICE NONE

b

Parameters
LATCH_CHOICE_SOFTWARE_1 The first trigger line
LATCH_CHOICE_SOFTWARE_2 The second trigger line
LATCH_CHOICE_SOFTWARE_3 The third trigger line
LATCH_CHOICE_FOOTSWITCH_1 The fourth trigger line
LATCH_CHOICE_FOOTSWITCH_2 The fifth trigger line
LATCH_CHOICE_ALL Used to clear all triggers with the setlLatch method
LATCH_CHOICE_NONE None

ROTARY_FORMAT

The ROTARY_FORMAT enumeration is used to set the type of formatting to apply to an EnDat, 1 Vpp or TTL rotary encoder.
The format is applied when calling the getPositions method of the EnDat, 1 Vpp or TTL modules.

Enumeration
ROTARY FORMAT

ROTARY FORMAT 360,
ROTARY FORMAT PLUS MINUS 360,
ROTARY FORMAT PLUS MINUS 180,
ROTARY FORMAT INFINITE PLUS MINUS,
ROTARY FORMAT UNKNOWN

b

Parameters
ROTARY_FORMAT_360 The rotary position is always from 0 to 360
ROTARY_FORMAT_PLUS_MINUS_360 The rotary position is between 0 to 360 when rotating clockwise

from the starting 0 position of the encoder. The rotary position is be-
tween 0 to -360 when rotating counterclockwise from the starting 0
position of the encoder. The starting 0 position, for relative encoders,
is set when the modules are first powered on and when referencing
is performed. The 0 position of an absolute encoder is always in the
same position.

ROTARY_FORMAT_PLUS_MINUS_180 The rotary position goes from 0 to 180 and then from -180 to 0 when
rotating clockwise. The rotary position goes from 0 to -180 and then
from 180 to 0 when rotating counterclockwise.

36 Library software

ROTARY_FORMAT_INFINITE_PLUS_MINUS

ROTARY_FORMAT_UNKNOWN

ADC_OPTIONS

For 1 Vpp and TTL encoders: The rotary position is between 0 to

the largest 64 bit double value when rotating clockwise from the
starting O position of the encoder. The rotary position is between

0 to smallest 64 bit double value when rotating counterclockwise
from the starting 0 position of the encoder. The starting 0 position is
set when the modules are first powered on and when referencing

is performed. For EnDat encoders: The rotary position is between 0
to a positive 64 bit double value based on the number of revolutions
that the encoder can store when rotating clockwise from the 0 posi-
tion of the encoder. The rotary position is between 0 to a negative 64
bit double value based on the number of revolutions that the encoder
can store when rotating counterclockwise from the 0 position of the
encoder. The 0 position of an absolute encoder is always in the same
position.

Unknown

The ADC_OPTIONS enumeration is used to select the analog to digital conversion value to read. The getAdcValues method of
the MseModuleclass fills in the parameter adcVals with an array of shorts. This array can be indexed by this enumeration to

access the desired ADC value.

Enumeration
ADC_OPTIONS

ADC_CHO,
ADC_CHI,
ADC_CH2,
ADC_CH3,
ADC_TEMP,

ADC NUM CHANNELS

}i
Parameters
ADC_CHO
ADC_CH1
ADC_CH2

ADC_CHS3

ADC_TEMP

ADC_NUM_CHANNELS

COUNT_REQUEST_OPTION

The voltage being read from the ADC on channel 0 in millivolts (reads
the 3.3V supply on the power supply and the 5V supply on other
modules)

The voltage being read from the ADC on channel 1 in millivolts
(reads the 24V supply on the power supply and is not used on other
modules)

The voltage being read from the ADC on channel 2 in millivolts
(reads the current draw on the power supply and not used on other
modules)

The voltage being read from the ADC on channel 3 in millivolts (reads
the ground on the power supply and the 3.3V supply on other mod-
ules)

The temperature of the CPU in Celsius * 10. Divide by ten to calcu-
late the degrees in Celsius.

The number of ADC channels available

The COUNT_REQUEST_OPTION enumeration is used to select the type of count value to return.

Enumeration
COUNT_REQUEST OPTION
{

COUNT REQUEST LATEST,
COUNT_ REQUEST LATCHED,

b

Parameters
COUNT_REQUEST_LATEST
COUNT_REQUEST_LATCHED

HEIDENHAIN MSElibrary

The latest count value should be returned

The last latched count value should be returned

37

Enumerations

Enumerations

ENCODER_TYPES_ENUM
The ENCODER_TYPES_ENUM enumeration is used to store the type of encoder attached to a channel.

Enumeration
ENCODER_TYPES ENUM
{
ENCODER_TYPE NONE,
ENCODER_TYPE LINEAR,
ENCODER_TYPE GAUGE,
ENCODER_TYPE ROTARY

Parameters
ENCODER_TYPE_NONE Enumeration for unknown or no encoder
ENCODER_TYPE_LINEAR Enumeration for a linear encoder
ENCODER_TYPE_GAUGE Enumeration for a gauge encoder
ENCODER_TYPE_ROTARY Enumeration for a rotary encoder

VPP_VOLTAGE_FEEDBACK

The VPP_VOLTAGE_FEEDBACK enumeration is used for the voltage feedback for the A and B signals for a specific encoder.
The getDiag method of the Mse1VppModule class fills in the parameter diagVals with an array of doubles. This array can be
indexed by this enumeration to access the desired voltage value.

Enumeration
VPP_VOLTAGE FEEDBACK
{
VPP_VOLTAGE SIGNAL A MV,
VPP_VOLTAGE SIGNAL B MV,
VPP_VOLTAGE NUM
i

Parameters
VPP_VOLTAGE_SIGNAL_A_MV The last reading for the signal A voltage in millivolts
VPP_VOLTAGE_SIGNAL_B_MV The last reading for the signal B voltage in millivolts
VPP_VOLTAGE_NUM The number of values in the enumeration

38 Library software

INTEGRITY_ENUMS

The INTEGRITY_ENUMS enumeration is used for masking the integrity value to determine which warning or error occured in

the module. The getintegrity method of the MseModule class fills in the parameter integrity with an unsigned long. This value

can be masked by this enumeration to determine which warnings or errors have occurred.

Enumeration

INTEGRITY ENUMS
{

INTEGRITY CURRENT WARNING = 0x00000001,
INTEGRITY CURRENT ERROR = 0x00000002,
INTEGRITY 24V_LOW_ERROR = 0x00000004,
INTEGRITY 24V _HIGH ERROR = 0x00000008,
INTEGRITY 24V_LOW_WARNING = 0x00000010,
INTEGRITY 24V _HIGH WARNING = 0x00000020,
INTEGRITY 5V_LOW_ERROR = 0x00000040,
INTEGRITY 5V _HIGH ERROR = 0x00000080,
INTEGRITY 5V_LOW_WARNING = 0x00000100,
INTEGRITY 5V _HIGH WARNING = 0x00000200,
INTEGRITY TEMPERATURE LOW_ERROR = 0x00000400,
INTEGRITY TEMPERATURE HIGH ERROR = 0x00000800,
INTEGRITY TEMPERATURE LOW WARNING = 0x00001000,
INTEGRITY TEMPERATURE HIGH WARNING = 0x00002000,
INTEGRITY FRAM ERROR = 0x00004000,
INTEGRITY FRAM RECOVERED = 0x00008000

Parameters

INTEGRITY_CURRENT_WARNING

INTEGRITY_CURRENT_ERROR

INTEGRITY_24V_LOW_ERROR

INTEGRITY_24V_HIGH_ERROR

INTEGRITY_24V_LOW_WARNING

INTEGRITY_24V_HIGH_WARNING

INTEGRITY_5V_LOW_ERROR

INTEGRITY_BV_HIGH_ERROR

INTEGRITY_BV_LOW_WARNING

INTEGRITY_B5V_HIGH_WARNING

INTEGRITY_TEMPERATURE_LOW_ERROR

INTEGRITY_TEMPERATURE_HIGH_ERROR

INTEGRITY_TEMPERATURE_LOW_WARN-

ING

INTEGRITY_TEMPERATURE_HIGH_WARN-

ING
INTEGRITY_FRAM_ERROR

INTEGRITY_FRAM_RECOVERED

HEIDENHAIN MSElibrary

Whether the current has exceeded the warning threshold (only used
for the power supply)

Whether the current has exceeded the error threshold (only used for
the power supply)

Whether the 24V supply has exceeded the low error threshold (only
used for the power supply)

Whether the 24V supply has exceeded the high error threshold (only
used for the power supply)

Whether the 24V supply has exceeded the low warning threshold
(only used for the power supply)

Whether the 24V supply has exceeded the high warning threshold
(only used for the power supply)

Whether the 5V supply has exceeded the low error threshold (only
used for non-power supply modules)

Whether the 5V supply has exceeded the high error threshold (only
used for non-power supply modules)

Whether the 5V supply has exceeded the low warning threshold
(only used for non-power supply modules)

Whether the 5V supply has exceeded the high warning threshold
(only used for non-power supply modules)

Whether the temperature has exceeded the low error threshold
(used for all modules)

Whether the temperature has exceeded the high error threshold
(used for all modules)

Whether the temperature has exceeded the low warning threshold
(used for all modules)

Whether the temperature has exceeded the high warning threshold
(used for all modules)

Whether the non-volatile configuration data of the module has failed
to be overwritten by the backup data after detection of memory
corruption (used for all modules). The module will utilize a default IP
address, netmask, and MAC address and will need to be sent back
to HEIDENHAIN for reprogramming.

Whether the non-volatile configuration data of the module has been
overwritten by the backup data because of memory corruption (used
for all modules)

39

Enumerations

Enumerations

REFERENCE_MARK_ENUM
The REFERENCE_MARK_ENUM enumeration is used for the type of reference mark used by a 1Vpp or TTL encoder.

Enumeration

REFERENCE MARK ENUM
{

REFERENCE MARK_NONE,
REFERENCE_MARK SINGLE,
REFERENCE MARK CODED 500,
REFERENCE MARK CODED 1000,
REFERENCE MARK CODED 2000,
REFERENCE MARK CODED 5000
REFERENCE MARK CODED ANGULAR

b

Parameters

REFERENCE_MARK_NONE
REFERENCE_MARK_SINGLE
REFERENCE_MARK_CODED_500
REFERENCE_MARK_CODED_1000
REFERENCE_MARK_CODED_2000
REFERENCE_MARK_CODED_5000
REFERENCE_MARK_CODED_ANGULAR

REFERENCE_MARK_STATE
The REF_MARK_STATE enumeration is used to determine the state of the referencing used by the 1Vpp and TTL encoders.

Enumeration

REF_MARK_STATE
{

REF_MARK_OFF,

No reference mark

A single reference mark

Reference marks at a 500 signal period spacing
Reference marks at a 1000 signal period spacing
Reference marks at a 2000 signal period spacing
Reference marks at a 5000 signal period spacing

Reference marks spaced based on the line count

REF_MARK_STARTED,
REF_MARK_FIND FIRST,
REF_MARK_FIND SECOND,
REF_MARK_FINISHED

b

Parameters

40

REF_MARK_OFF
REF_MARK_STARTED
REF_MARK_FIND_FIRST
REF_MARK_FIND_SECOND
REF_MARK_FINISHED

Not referenced

Referencing has started

Referencing has found the first reference mark
Referencing has found the second reference mark

Referencing has finished

Library software

COUNTER_STATUS

The COUNTER_STATUS enumeration are used to determine the counter status. The getChannelStatus method of the
MseDeviceModule class fills in the parameter channelStatus with an unsigned char. This value can be masked by this enu-

meration to determine the error status. This method is only used to get the channel error status for a EnDat, 1Vpp, or TTL en-
coder. EnDat encoders should use the getErrors and getWarnings methods and read the counter status for an added check.

Enumeration
COUNTER STATUS

{

COUNTER_STATUS EDGE_DISTANCE ERROR 0x0001,
COUNTER_STATUS AVG_ADDER OVERFLOW 0x0002,
COUNTER_STATUS TOO MANY AVERAGE SAMPLES = 0x0004,
COUNTER_STATUS TOUCH PROBE_OVERFLOW = 0x0008,
COUNTER STATUS FILTER SPIKE DETECTED = 0x0010,
COUNTER_STATUS AMPLITUDE MIN ERROR = 0x0020,
COUNTER_STATUS AMPLITUDE MIN WARNING = 0x0040,
COUNTER_STATUS AMPLITUDE MAX ERROR = 0x0080

Parameters

COUNTER_STATUS_EDGE_DISTANCE_ER-
ROR

COUNTER_STATUS_AVG_ADDER_OVER-
FLOW

COUNTER_STATUS_TOO_MANY_AVER-
AGE_SAMPLES

COUNTER_STATUS_TOUCH_PROBE_OVER-
FLOW

COUNTER_STATUS_FILTER_SPIKE_DETECT-
ED

COUNTER_STATUS_AMPLITUDE_MIN_ER-
ROR

COUNTER_STATUS_AMPLITUDE_MIN_
WARNING

COUNTER_STATUS_AMPLITUDE_MAX_ER-
ROR

HEIDENHAIN MSElibrary

This error occurs when the dg00 and dg90 inputs change simultane-
ously within one system clock cycle resulting in position errors. This
error can be reported on EnDat, 1Vpp, and TTL encoders.

Currently not used
Currently not used
Currently not used

This error occurs when the filter for the dg00 and dg90 has sup-
pressed input spikes resulting in position errors. This error can be
reported on EnDat and 1Vpp encoders.

The amplitude of the dg00 and dg90 signals are out of range result-
ing in position errors. This error can be reported on EnDat and 1Vpp
encoders.

The amplitude of the dg00 and dg90 signals are close to being out of
range. This error can be reported on EnDat and 1Vpp encoders.

The amplitude of the dg00 and dg90 signals are out of range result-
ing in position errors. This error can be reported on EnDat and 1Vpp
encoders.

41

Enumerations

Enumerations

MSE_XML_RETURN
The MSE_XML_RETURN enumeration are used for the return values of the MseConfigReader and MseConfigWiter.

Enumeration

MSE_XML_ RETURN
{

MSE_XML RETURN OK =0,
MSE_XML RETURN INVALID TAG,
MSE_XML RETURN INVALID FILE,

MSE_XML RETURN DOM CREATION FAILED,
MSE_XML RETURN DOM NOT CREATED,

MSE_XML RETURN DOM NULL,

MSE_XML RETURN DOM ROOT ELEMENT NULL,
MSE_XML RETURN INVALID MODULE CONFIG TAGNAME,
MSE_XML RETURN INVALID MODULE TAGNAME,
MSE_XML RETURN INVALID CHANNEL TAGNAME,
MSE_XML RETURN INVALID MODULE,

MSE_XML RETURN INVALID MODULE LIST,
MSE_XML RETURN INVALID CHANNEL,

MSE_XML RETURN INVALID CHANNEL LIST,
MSE_XML RETURN TAGNAME NOT FOUND,
MSE_XML RETURN DATA NOT CHANGED,
MSE_XML RETURN NULL_ POINTER,

MSE_XML RETURN NUM

Parameters

42

MSE_XML_RETURN_OK
MSE_XML_RETURN_INVALID_TAG
MSE_XML_RETURN_INVALID_FILE

MSE_XML_RETURN_DOM_CREATION_
FAILED

MSE_XML_RETURN_DOM_NOT_CREATED

MSE_XML_RETURN_DOM_NULL

MSE_XML_RETURN_DOM_ROOT_ELE-
MENT_NULL

MSE_XML_RETURN_INVALID_MODULE_
CONFIG_TAGNAME

MSE_XML_RETURN_INVALID_MODULE_
TAGNAME

MSE_XML_RETURN_INVALID_CHANNEL_
TAGNAME

MSE_XML_RETURN_INVALID_MODULE

MSE_XML_RETURN_INVALID_MODULE_
LIST

MSE_XML_RETURN_INVALID_CHANNEL

MSE_XML_RETURN_INVALID_CHANNEL_
LIST

MSE_XML_RETURN_TAGNAME_NOT_
FOUND

MSE_XML_DATA_NOT_CHANGED
MSE_XML_RETURN_NULL_POINTER
MSE_XML_RETURN_NUM

No error
Invalid tag name
The ModuleConfig file passed in is not valid

The DOM parser could not load the file into memory

The DOM parser was never created
The DOM parser is NULL
The root element of the DOM parser is NULL

The ModuleConfig tag name in the ModuleConfig file is invalid

The tag name requested for the module is invalid

The tag name requested for the channel is invalid

The module requested is invalid

The module list used for finding elements could not be created

The channel requested is invalid

The channel list used for finding elements could not be created

The tag name could not be found

The data to set is the same as what is already in the file
A NULL pointer was passed in as a parameter

The number of values in the enumeration

Library software

MSE_XML_ELEMENTS
The MSE_XML_ELEMENTS enumeration are used for accessing the XML data loaded into memory.

Enumeration

MSE_XML_ELEMENTS

HEIDENHAIN MSElibrary

{

MSE_XML ELEMENT BASE LABEL
MSE_ XML ELEMENT SERIAL NUMBER,
MSE_XML ELEMENT MODEL,
MSE_XML ELEMENT LABEL,
MSE_XML ELEMENT MODEL_ID,
MSE_XML ELEMENT HARDWARE ID,
MSE_XML ELEMENT BL VERSION,
MSE_XML ELEMENT FW _VERSION,
MSE_XML ELEMENT USING DHCP,
MSE_XML ELEMENT NETMASK,
MSE_ XML ELEMENT NETMASK STATIC,
MSE_ XML ELEMENT MAC,

MSE_ XML ELEMENT IP,

MSE_XML ELEMENT IP STATIC,
MSE_ XML ELEMENT PORT,
MSE_XML ELEMENT STATE,

MSE_ XML ELEMENT PRIMARY EXCITATION VOLTAGE,
MSE_ XML ELEMENT PRIMARY EXCITATION FREQUENCY,
MSE_XML ELEMENT LAST MODULE ENUM,

MSE_XML ELEMENT CHANNEL LABEL = 100,
MSE_XML ELEMENT ERROR MONITORING,

MSE_XML ELEMENT POPULATED,

MSE_XML ELEMENT DEVICE TYPE,

MSE_ XML ELEMENT ROTARY FORMAT TYPE,
MSE_XML ELEMENT UOM,

MSE_ XML ELEMENT ERROR COMPENSATION,

MSE_ XML ELEMENT SCALE FACTOR,

MSE_XML ELEMENT MASTERING ENABLED,

MSE_ XML ELEMENT MASTER DESIRED,

MSE_XML ELEMENT MASTER OFFSET,

MSE_XML ELEMENT MASTER UOM,

MSE_ XML ELEMENT DISPLAY RESOLUTION,
MSE_XML ELEMENT RESOLUTION,

MSE_XML ELEMENT OFFSET,

MSE_ XML ELEMENT DISTINGUISHABLE REVOLUTIONS,
MSE_ XML ELEMENT ENCODER NAME,

MSE_XML ELEMENT ENCODER ID,

MSE_XML ELEMENT ENCODER SERIAL NUMBER,
MSE_XML ELEMENT LINE COUNT,

MSE_ XML ELEMENT SIGNAL PERIOD,

MSE_XML ELEMENT COUNTING DIRECTION,

MSE_ XML ELEMENT REFERENCE MARK,

MSE_XML ELEMENT UNUSED 1,

MSE_ XML ELEMENT INSTRUMENTATION RANGE MIN,
MSE_ XML ELEMENT INSTRUMENTATION RANGE MAX,
MSE_XML ELEMENT ACTUAL RANGE MIN,

MSE_XML ELEMENT ACTUAL RANGE MAX,

MSE_XML ELEMENT CALIBRATION TIMESTAMP,
MSE_ XML ELEMENT RECALIBRATION TIMER,
MSE_XML ELEMENT GAIN CODE,

MSE_XML ELEMENT INTERPOLATION,

MSE_XML ELEMENT SIGNAL TYPE,

MSE_XML ELEMENT LAST CHANNEL ENUM

Il
o
~

43

Enumerations

Enumerations

Parameters

44

MSE_XML_ELEMENT_BASE_LABEL
MSE_XML_ELEMENT_SERIAL_NUMBER
MSE_XML_ELEMENT_MODEL
MSE_XML_ELEMENT_LABEL
MSE_XML_ELEMENT_MODEL_ID
MSE_XML_ELEMENT_HARDWARE_ID
MSE_XML_ELEMENT_BL_VERSION
MSE_XML_ELEMENT_FW_VERSION
MSE_XML_ELEMENT_USING_DHCP
MSE_XML_ELEMENT_NETMASK
MSE_XML_ELEMENT_NETMASK_STATIC
MSE_XML_ELEMENT_MAC
MSE_XML_ELEMENT_IP
MSE_XML_ELEMENT_IP_STATIC
MSE_XML_ELEMENT_PORT
MSE_XML_ELEMENT_STATE

MSE_XML_ELEMENT_PRIMARY_EXCITA-
TION_VOLTAGE

MSE_XML_ELEMENT_PRIMARY_EXCITA-
TION_FREQUENCY

MSE_XML_ELEMENT_LAST_MODULE_ENUM

MSE_XML_ELEMENT_CHANNEL_LABEL
MSE_XML_ELEMENT_ERROR_MONITORING

MSE_XML_ELEMENT_POPULATED

MSE_XML_ELEMENT_DEVICE_TYPE

MSE_XML_ELEMENT_ROTARY_FORMAT_
TYPE

MSE_XML_ELEMENT_UOM

MSE_XML_ELEMENT_ERROR_COMPENSA-
TION

MSE_XML_ELEMENT_SCALE_FACTOR

MSE_XML_ELEMENT_MASTERING_EN-
ABLED

MSE_XML_ELEMENT_MASTER_DESIRED
MSE_XML_ELEMENT_MASTER_OFFSET
MSE_XML_ELEMENT_MASTER_UOM

MSE_XML_ELEMENT_DISPLAY_RESOLUTION
MSE_XML_ELEMENT_RESOLUTION

MSE_XML_ELEMENT_OFFSET

MSE_XML_ELEMENT_DISTINGUISHABLE_
REVOLUTIONS

MSE_XML_ELEMENT_ENCODER_NAME
MSE_XML_ELEMENT_ENCODER_ID

MSE_XML_ELEMENT_ENCODER_SERIAL_
NUMBER

MSE_XML_ELEMENT_LINE_COUNT

The base label

Used for the Module serial numbers

The model number of the module

The customizable label of the module

The model ID of the module

The hardware ID of the module

The bootloader version of the module

The firmware version of the module

Whether the module is using DHCP

The netmask of the module

The netmask of the module if DHCP cannot be obtained
The MAC address of the module

The IP address of the module

The IP address of the module if DHCP cannot be obtained
The port used by the module

Whether the module is inactive (0), active (1), or bootloader (2)

The primary excitation voltage for an LVDT module

The primary excitation frequency for an LVDT module

The last module enumeration is for ease of use when indexing this
enumerated list

The customizable label of the channel

If error monitoring should be performed in the firmware for a spe-
cific channel. Currently on supported for EnDat and 1Vpp.

If the channel has an device connected. Currently only used for
EnDat and 1Vpp.

The type of device for a specific channel. The device types are
none, Linear, Gauge, and Rotary for EnDat and 1Vpp.

The type of format to show rotary positioning in for a specific chan-
nel

The unit of measurement to display position data in for a specific
channel

The multiplier to use for linear error correction for a specific channel

The scale factor to use for a specific channel

Whether mastering is enabled in the MSEsetup for a specific chan-
nel

The desired master position in the MSEsetup for a specific channel
The computed master offset in the MSEsetup for a specific channel

The unit of measurement used when creating the master offset in
the MSEsetup for a specific channel

The display resolution in the MSEsetup for a specific channel

The resolution for a specific channel. Used for analog and LVDT
devices to scale the raw signal value of the device into the desired
units. (currently not supported)

The offset to apply for a specific channel. Used for analog modules.
(currently not supported)

The number of revolutions for a rotary encoder for a specific chan-
nel

The name of an EnDat encoder.
The ID of an EnDat encoder.

The serial number of an EnDat encoder.

The line count for a rotary encoder for a specific channel. Used for
1Vpp encoders.

Library software

MSE_XML_ELEMENT_SIGNAL_PERIOD

MSE_XML_ELEMENT_COUNTING_DIREC-
TION

MSE_XML_ELEMENT_REFERENCE_MARK

MSE_XML_ELEMENT_UNUSED_1

MSE_XML_ELEMENT_INSTRUMENTATION_
RANGE_MIN

MSE_XML_ELEMENT_INSTRUMENTATION_
RANGE_MAX

MSE_XML_ELEMENT_ACTUAL_RANGE_MIN

MSE_XML_ELEMENT_ACTUAL_RANGE_MAX

MSE_XML_ELEMENT_CALIBRATION_TIME-
STAMP

MSE_XML_ELEMENT_RECALIBRATION_TIM-
ER

MSE_XML_ELEMENT_GAIN_CODE
MSE_XML_ELEMENT_INTERPOLATION
MSE_XML_ELEMENT_SIGNAL_TYPE

MSE_XML_ELEMENT_LAST_CHANNEL_
ENUM

HEIDENHAIN MSElibrary

The signal period for a linear encoder for a specific channel. Used
for 1Vpp encoders.

The direction for the encoder for a specific channel

The reference mark type for the encoder for a specific channel.
Used for 1Vpp encoders.

Unused

The minimum value that a device can utilize normalized to the UOM

The maximum value that a device can utilize normalized to the
UoM

The minimum value that a device can utilize in raw form (mA orV
for Analog module, V for LVDT module)

The maximum value that a device can utilize in raw form (mA or V
for Analog module, V for LVDT module)

The time that the calibration for an Analog or LVDT channel was
performed

The number of hours before a recalibration is needed

The gain code used for calibrating an LVDT sensor's output value
The interpolation used for aTTL encoder

The type of signal that the encoder uses. This will be equal to
the enumeration value of SIGNAL_TYPE and can be SIGNAL_
TYPE_1VPP or SIGNAL_TYPE_11UAPP and is only used for the 1
Vpp module.

The number of values in the enumeration

45

Enumerations

Enumerations

PROGRAMMING_STATE_ENUMS

The PROGRAMMING_STATE_ENUMS enumeration is used for the state of the firmware and bootloader updates. The pro-
gramming state can be queried while the program() method is running by calling the getProgrammingState() method from
another thread.

Enumeration
PROGRAMMING STATE ENUMS
{
PROGRAMMING STATE IDLE =0,
PROGRAMMING STATE INITIALIZING,
PROGRAMMING STATE DOWNLOADING,
PROGRAMMING STATE REBOOTING,
PROGRAMMING STATE FINISHED,
PROGRAMMING STATE FAILED,
PROGRAMMING STATE COUNT

Parameters
PROGRAMMING_STATE_IDLE Programming has not been initiated
PROGRAMMING_STATE_INITIALIZING Initializing the programming data
PROGRAMMING_STATE_DOWNLOADING Downloading to the module
PROGRAMMING_STATE_REBOOTING Rebooting the module
PROGRAMMING_STATE_FINISHED Finished programming
PROGRAMMING_STATE_FAILED Failed programming
PROGRAMMING_STATE_COUNT The number of values in the enumeration

46 Library software

UdpCmdType

The UdpCmdType enumeration is used internally for communication to a module
determine which asynchronous message was received from a module.

Enumeration
UdpCmdType

UDP_OPEN =0,
UDP_GET COUNTS,
UDP_SET OUTPUT,
UDP_RESET,
UDP_CONFIG IP,
UDP_CONFIG DHCP,
UDP_LOAD FAIL,
UDP_GET CONFIG,
UDP_GET LEFT,
UDP_SET RIGHT,
UDP_MOD_TYPE,
UDP_ENDAT PARAMS,
UDP_ENDAT INFO,
UDP_CONFIG_PORTS,
UDP_UNUSED 2,
UDP_CHANNEL_CONFIG,
UDP_CHANNEL PRESENCE,
UDP_UNKNOWN_CMD,
UDP_CONNECT,
UDP_FNET ERROR,
UDP_RELOAD CODE,
UDP_UNUSED 5,
UDP_LATCH,

UDP_ADC,

UDP_FRAM DATA,
UDP_ASYNC,
UDP_INTEGRITY,
UDP_ANALOG_DIAGS,
UDP_INIT BIN,
UDP_LOAD BIN,
UDP_FINISH BIN,
UDP_SET_ MODE,
UDP_G50_DATA,
UDP_CHANNEL_STATUS,
UDP_RESTORE_FACTORY,
UDP_COUNT

HEIDENHAIN MSElibrary

. A subset of the enumeration is used to

47

Enumerations

Enumerations

Parameters

UDP_OPEN
UDP_GET_COUNTS
UDP_SET_OUTPUT
UDP_RESET
UDP_CONFIG_IP
UDP_CONFIG_DHCP
UDP_LOAD_FAIL
UDP_GET_CONFIG
UDP_GET_LEFT
UDP_SET_RIGHT
UDP_MOD_TYPE
UDP_ENDAT_PARAMS
UDP_ENDAT_INFO
UDP_CONFIG_PORTS
UDP_UNUSED_2
UDP_CHANNEL_CONFIG

UDP_CHANNEL_PRESENCE

UDP_UNKNOWN_CMD
UDP_CONNECT

UDP_FNET_ERROR

UDP_RELOAD_CODE
UDP_UNUSED_5
UDP_LATCH

UDP_ADC
UDP_FRAM_DATA
UDP_ASYNC
UDP_INTEGRITY

UDP_ANALOG_DIAGS
UDP_INIT_BIN
UDP_LOAD_BIN
UDP_FINISH_BIN
UDP_SET_MODE
UDP_Gb50_DATA
UDP_CHANNEL_STATUS

UDP_RESTORE_FACTORY
UDP_COUNT

Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only

Used by a client to receive asynchronous updates from a module
informing of its networking settings

Used by the firmware to tell the client that an error occurred when
reading a message from the socket

Internal use only
Internal use only

Used by a client to receive asynchronous updates from a module
informing of footswitch presses

Internal use only
Internal use only
Internal use only

Used by a client to receive asynchronous updates from a module
informing of module warnings and errors

Internal use only
Internal use only
Internal use only
Internal use only
Internal use only
Internal use only

Used by a client to receive asynchronous updates from a module
informing of channel warnings, errors, or referencing completed

Internal use only

The number of values in the enumeration

Library software

LVDT_UOM
The LVDT_UOM enumeration is used for the units of measurement that are allowed for an LVDT sensor. Currently only mil-
limeters is supported.
Enumeration
LVDT UOM
{
LVDT _UOM UNDEFINED = O,
LVDT UOM INCHES,
LVDT UOM MM
}i
Parameters
LVDT_UOM_UNDEFINED The UOM is undefined
LVDT_UOM_INCHES Inches
LVDT_UOM_MM Millimeters

LVDT_UPDATE_CHOICES

The LVDT_UPDATE_CHOICES enumeration is used for choosing the desired group of sensors to read in the module. This is
useful for diagnostic purposes to isolate specific counts. This enumeration is used by the setDiagnosticsEnabled method.

Enumeration
LVDT UPDATE CHOICES

{
LVDT UPDATE GROUP 1 = 0,
LVDT UPDATE GROUP_ 2,
LVDT UPDATE GROUP_3,
LVDT UPDATE GROUP 4,
LVDT UPDATE EXCITATION VOLTAGE,
LVDT UPDATE CHOICE ALL

i

Parameters
LVDT_UPDATE_GROUP_1 The output counts for sensors connected to channel 1 and 2
LVDT_UPDATE_GROUP_2 The output counts for sensors connected to channel 3 and 4
LVDT_UPDATE_GROUP_3 The output counts for sensors connected to channel 5 and 6
LVDT_UPDATE_GROUP_4 The output counts for sensors connected to channel 7 and 8
LVDT_UPDATE_EXCITATION_VOLTAGE Unused
LVDT_UPDATE_CHOICE_ALL The output counts for all sensors are read

LVDT_OVERSAMPLING_CHOICES

The LVDT_OVERSAMPLING_CHOICES enumeration is used for choosing the desired oversampling of the ADC to use in the
module. The ADC is used internally to obtain the count reading of an LVDT sensor. The more oversampling that is performed
will take longer to obtain the reading but will also filter out more noise.

Enumeration
LVDT OVERSAMPLING CHOICES
{
LVDT OVERSAMPLING MINIMUM = 0x10,

LVDT OVERSAMPLING MEDIUM = 0x18,
LVDT OVERSAMPLING MAXMUM = 0x20
b
Parameters

LVDT_OVERSAMPLING_MINIMUM Obtains a reading from the ADC approximately once every ms per
group of 2 sensors. This will take approximately 4 ms to read from
all 4 sensors.

LVDT_OVERSAMPLING_MEDIUM Obtains a reading from the ADC approximately once every 2 ms per
group of 2 sensors. This will take approximately 8 ms to read from
all 4 sensors.

LVDT_OVERSAMPLING_MAXIMUM Obtains a reading from the ADC approximately once every 4 ms per
group of 2 sensors. This will take approximately 16 ms to read from
all 4 sensors.

HEIDENHAIN MSElibrary 49

Enumerations

Enumerations

ANALOG_DIAG_VOLTAGES_ENUM
The ANALOG_DIAG_VOLTAGES_ENUM enumeration is used internally to index into the voltages read from the getDiag-

Voltages method.

Enumeration

ANALOG_DIAG VOLTAGES ENUM

{

Parameters
ANALOG_DIAG_VOLTAGE
ANALOG_DIAG_CURRENT
ANALOG_DIAG_5V_1
ANALOG_DIAG_GROUND
ANALOG_DIAG_bV_2
ANALOG_DIAG_VREF

ANALOG_DIAG VOLTAGE = 0,
ANALOG DIAG CURRENT,
ANALOG DIAG 5V 1,
ANALOG_DIAG GROUND,
ANALOG DIAG 5V 2,
ANALOG_DIAG VREF,
NUM_ANALOG DIAG VOLTAGES

The voltages reading from a channel

The current reading from a channel

The 5 volt reading from a channel

The ground reading from a channel

The second 5 volt reading from a channel

The reference voltage reading from a channel

NUM_ANALOG_DIAG_VOLTAGES The number of reading returned for each channel

TTL_INTERPOLATION

The TTL_INTERPOLATION enumeration is used to select the type of interpolation to use for aTTL encoder when the setSig-
nalPeriod or setLineCount methods are called.

Enumeration
TTL INTERPOLATION
{

Parameters
TTL_INTERPOLATION_X1
TTL_INTERPOLATION_X2
TTL_INTERPOLATION_X5
TTL_INTERPOLATION_X10
TTL_INTERPOLATION_X20
TTL_INTERPOLATION_X25
TTL_INTERPOLATION_X50
TTL_INTERPOLATION_X100
TTL_INTERPOLATION_X200

50

TTL INTERPOLATION X1 = 1,

TTL INTERPOLATION X2 = 2,

TTL INTERPOLATION X5 = 5,

TTL INTERPOLATION X10 = 10,
TTL INTERPOLATION X20 = 20,
TTL INTERPOLATION X25 = 25,
TTL INTERPOLATION X50 = 50,
TTL INTERPOLATION X100 = 100,
TTL INTERPOLATION X200 = 200

No interpolation is needed
Uses a 2x multiplier

Uses a bx multiplier

Uses a 10x multiplier
Uses a 20x multiplier
Uses a 25x multiplier
Uses a 50x multiplier
Uses a 100x multiplier

Uses a 200x multiplier

Library software

SIGNAL _TYPE

The SIGNAL_TYPE enumeration is used to show the type of signal used by an encoder. See the getSignalType, setSignal-
Type, and detectSignalType methods of the 1 Vpp module.

Enumeration
SIGNAL TYPE

SIGNAL TYPE 1VPP = 0,
SIGNAL TYPE 11UAPP,
SIGNAL TYPE TTL,
SIGNAL TYPE UNKNOWN = 100

Parameters
SIGNAL_TYPE_1VPP The encoder has a 1 Vpp signal
SIGNAL_TYPE_11UAPP The encoder has a 11 yApp signal
SIGNAL_TYPE_TTL The encoder has a TTL signal. Currently not used.
SIGNAL_TYPE_UNKNOWN The encoder has an unknown signal.

HEIDENHAIN MSElibrary

51

Enumerations

2.6 Classes and structures

ModuleData

The ModuleData class holds all of the significant information regarding a specific module. This class can be accessed by the
getModuleData method of the MseModule class.

Classes and structures

numChannels
isFirst

islnputConnected

ipAddress

port

macAddress
bootloaderVersion
firmwareVersion
isUsingDhcp
netmask
ipAddressStatic

netmaskStatic

serialNumber

modulelndex

Class
class ModuleData
{
public:
MODULE_ID type;
unsigned long hwId;
unsigned char hwRev;
unsigned short numChannels;
bool isFirst;
bool isInputConnected;
char ipAddress[SIZE IP ADDRESS];
unsigned short port;
char macAddress [SIZE MAC ADDRESS];
char bootloaderVersion[SIZE BUILD INFO];
char firmwareVersion[SIZE BUILD INFO];
bool isUsingDhcp;
char netmask[SIZE IP ADDRESS];
char ipAddressStatic[SIZE IP ADDRESS];
char netmaskStatic[SIZE IP ADDRESS];
char serialNumber [SIZE SERIAL NUMBER];
char moduleIndex;
}i
Parameters

type The type of module

hwld The ID of the PCBA for the module

hwRev The revision of the PCBA for the module

The number of channels in the module
Whether the module is the first one in the chain

Whether there is input connected (used for ordering after a broad-
cast)

The IP address returned from the module

The port used by the module

The MAC address used by the module

The bootloader version

The firmware version

Whether or not the module is using DHCP

The netmask of the module that received the UDP_OPEN command

The static IP address of the module that received the UDP_OPEN
command

The static netmask of the module that received the UDP_OPEN
command

The serial number of the module that received the UDP_OPEN com-
mand

The module index character of the module that received the UDP_
OPEN command

Library software

DeviceData

The DeviceData structure is used to hold the encoder information returned from an EnDat module. This class can be ac-
cessed with the getDeviceData method of the MseEndatModule class.

Structure
struct DeviceData

{

Parameters

name

id

serialNum

isReversed

isRotary

resolution

measurementlLength
signalPeriod

distinguishableRevolutions

positionBits

HEIDENHAIN MSElibrary

char
char
char
bool
bool
unsigned
unsigned
unsigned
unsigned
unsigned

long
long
long
short
char

name [DEVICE NAME SIZE + 1];
id[DEVICE ID SIZE + 1];/
serialNum[SERIAL NUMBER SIZE + 1];
isReversed;

isRotary;

resolution;

measurementLength;

signalPeriod;
distinguishableRevolutions;
positionBits;

The name returned from the encoder (enough space is allocated to
include the terminating character)

The id returned from the encoder (enough space is allocated to
include the terminating character)

The serial number returned from the encoder (enough space is al-
located to include the terminating character)

Whether positive numerical count data refers to motion in the nega-
tive or positive direction. A value of true refers to negative direction
as being positive count increments

Whether the encoder is rotary or linear

The resolution for the encoder (in counts per nanometer for non-
rotary and steps per revolution for rotary)

The measurement length of the encoder
The signal period of the encoder

The number of distinguishable revolutions for a multi-turn rotary
encoder. Single turn rotary encoders will be 1.

The number of bits used for calculating the position. Used internally
by the MSElibrary.

53

Classes and structures

Classes and structures

LeftData

The LeftData structure holds all the information returned from the getlLeft() command.

Structure

struct LeftData
{

Parameters

ipAddress
isConnectInSet
isFirstModule
isLastModule
isMiddleModule

char
bool
bool
bool
bool

ipAddress[SIZE IP ADDRESS];
isConnectInSet;
isFirstModule;
isLastModule;
isMiddleModule;

The IP address of the module
Whether the module has GPIO input pins set

Whether the module is the first in the line

Whether the module is the last in the line

Whether the module is the middle in the line

MSE1000ConnectResponse

The MSE1000ConnectResponse structure holds the MSE Connect response information. This structure is filled in when the
response is received for a UDP_OPEN command

Structure
struct MSE1000ConnectResponse

{

Parameters

54

ipAddress

port
isFirstModule
isUsingDhcp
macAddress
netmask
ipAddressStatic
netmaskStatic

serialNumber

char
unsigned short
bool
bool
char
char
char
char
char

ipAddress [SIZE IP ADDRESS];

port;
isFirstModule;
isUsingDhcp;

macAddress [SIZE MAC ADDRESS] ;

netmask[SIZE IP ADDRESS];

ipAddressStatic[SIZE IP ADDRESS];

netmaskStatic[SIZE IP ADDRESS];

serialNumber [SIZE SERIAL NUMBER];

The IP address of the module that received the UDP_OPEN command
The UDP port of the module that received the UDP_OPEN command

Whether or not the module is the first one in the MSE module chain

Whether or not the module is using DHCP
The MAC address of the module that received the UDP_OPEN command
The netmask of the module that received the UDP_OPEN command

The static IP address of the module that received the UDP_OPEN command

The static netmask of the module that received the UDP_OPEN command

The serial number of the module that received the UDP_OPEN command

Library software

Encoderinfo

The Encoderinfo structure holds the encoder information for a specific device.

Structure
struct EncoderInfo

{

Parameters
encoderType
uom
resolution
countingDirectionPositive

errorCompensation

HEIDENHAIN MSElibrary

ENCODER TYPES ENUM encoderType;

UOM uom;

unsigned long resolution;

bool countingDirectionPositive;
double errorCompensation;

The type of encoder attached to the channel

The unit of measurement for the device

Not used (use the getResolution method instead)

The direction the counts are traversing

The multiplier used to scale the counts returned from the device for error compensation

55

Classes and structures

Return values

2.7 Return values

Most methods will return a MseResults data type. The MseResults contains the following methods for getting the return
code and additional information from the MseResults data type. Refer to 4.11 MSE_RESPONSE_CODE for response codes.

The following methods are used only for C++ calls. The C wrappers will return the MSE_RESPONSE_CODE only.

getCode

The getCode method returns the response code.

Method
MSE_RESPONSE CODE getCode () ;

getMethod
The getMethod method returns the method that failed or the first method called.

Method
char* getMethod () ;

getLine

The getlLine method returns the line that failed.

Method
unsigned long getLine();

showRespCode
The showRespCode method is used to return a string representation of the MSE_RESPONSE_CODE enumeration.

Method
char* showRespCode
(
MSE RESPONSE CODE code
);
Parameters

code The MSE_RESPONSE_CODE to stringify

Example:

MseResults retVal;
retVal = module->getCounts (counts, module->getNumChannels (), COUNT REQUEST LATEST) ;
if (RESPONSE OK != retVal.getCode())
{
std::stringstream ss;
ss << “Error: “ << MseResults:: showRespCode (retVal.getCode())
cout << ss;

56 Library software

2.8 Constants

NUM_MSE1000_IO_INPUTS
The NUM_MSE1000_IO_INPUTS constant is the number of inputs on the I/O module.

Constant
static const unsigned int NUM MSE1000 IO INPUTS = 4;

NUM_MSE1000_I0_OUTPUTS
The NUM_MSE1000_IO_OUTPUTS constant is the number of outputs on the I/O module.

Constant
static const unsigned int NUM MSE1000 IO OUTPUTS = 4;

DEVICE_NAME_SIZE

The DEVICE_NAME_SIZE constant is the size of the device name char array returned in the DeviceData structure not includ-
ing a terminating character.

Constant
const int DEVICE NAME SIZE = 9;

DEVICE_ID_SIZE

The DEVICE_ID_SIZE constant is the size of the device ID char array returned in the DeviceData structure (not counting a
terminating character.

Constant
const int DEVICE ID SIZE = 10;

SERIAL_NUMBER_SIZE

The SERIAL_NUMBER_SIZE constant is the size of the encoder serial number char array returned in the DeviceData struc-
ture not including a terminating character.

Constant
const int SERIAL NUMBER SIZE = 16;

HEIDENHAIN MSElibrary 57

Constants

Constants

SIZE_IP_ADDRESS

The SIZE_IP_ADDRESS constant is the size of the IP address string including decimal notation and terminator.

Constant
const short SIZE IP ADDRESS = 18;

SIZE_MAC_ADDRESS
The SIZE_MAC_ADDRESS constant is the size of the MAC address string including colons and terminator.

Constant
const short SIZE MAC ADDRESS = 19;

SIZE_BUILD_INFO

The SIZE_BUILD_INFO constant is the size of the Maximum build info string including terminator.

Constant
const short SIZE BUILD INFO = 32;

SIZE_SERIAL_NUMBER

The SIZE_SERIAL_NUMBER constant is the size of the module serial number (ASCII characters) + 1 byte for the terminator
and 2 bytes for the spaces.

Constant
const short SIZE SERIAL NUMBER = 11;

MAX_NUM_MODULES

The MAX_NUM_MODULES constant is the maximum number of modules that can be connected to a MSE.

Constant
const int MAX NUM MODULES = 64;

MAX_CHANNELS_PER_MODULE

The MAX_CHANNELS_PER_MODULE constant is the maximum number of channels that can be connected to each module.

Constant
const short MAX CHANNELS PER MODULE = 8;

58 Library software

MSE1000_PORT
The MSE1000_PORT constant is the port used by the MSE module for UDP communication.

Constant
const int MSE1000 PORT = 27015;

MSE1000_CLIENT_DEFAULT_PORT

The MSE1000_CLIENT_DEFAULT_PORT constant is the port used by the client PC for UDP communication. The client PC
can use a different port if there is another application installed that is using the same port.

Constant
const int PC_PORT = 27016;

MSE1000_ASYNC_PORT
The MSE1000_ASYNC_PORT const is the port used by the MSE to send asynchronous messages.

Constant
const int MSE1000 ASYNC PORT = 27300;

NUM_INTEGRITY_RANGES

The number of integrity range values that are returned when requesting the integrity value.

Constant
const short NUM INTEGRITY RANGES = 14;

NUM_LATCH_TYPES

The number of latch types available. The latch types are located in the LATCH_CHOICE enumeration and consist of the 3
software latches and the two footswitches.

Constant
const unsigned short NUM LATCH TYPES = 5;

COUNTS_PER_LINE

The number of counts per each line of an analog rotary encoder

Constant
const int COUNTS PER LINE = 4;

INTERPOLATION_VALUE

There are 12 bits used for interpolation of the analog encoders, which equates to a value of 1024

Constant
const int INTERPOLATION VALUE = 1024;

NUM_LVDT_CHANNELS
The NUM_LVDT_CHANNELS constant is the maximum number of channels available for an LVDT module.

Constant
const int NUM LVDT CHANNELS = §;

HEIDENHAIN MSElibrary

59

Constants

Constants

LVDT_EXCITATION_VOLTAGE_MIN_VPP
The LVDT_EXCITATION_VOLTAGE_MIN_VPP constant is the minimum voltage allowed for the setExcitationVoltage method.

Constant
const double LVDT EXCITATION VOLTAGE MIN VPP = 1.5;

LVDT_EXCITATION_VOLTAGE_MAX_VPP
The LVDT_EXCITATION_VOLTAGE_MAX_VPP constant is the maximum voltage allowed for the setExcitationVoltage method.

Constant
const double LVDT EXCITATION VOLTAGE MAX VPP = 5.5;

LVDT_EXCITATION_FREQUENCY_MIN_KHZ

The LVDT_EXCITATION_FREQUENCY_MIN_KHZ constant is the minimum frequency allowed for the setExcitationFrequency
method.

Constant
const double LVDT EXCITATION FREQUENCY MIN KHZ = 3.0;

LVDT_EXCITATION_FREQUENCY_MAX_KHZ

The LVDT_EXCITATION_FREQUENCY_MAX_KHZ constant is the maximum frequency allowed for the setExcitationFrequen-
cy method.

Constant
const double LVDT EXCITATION FREQUENCY MAX KHZ = 50.0;

NUM_MSE1000_ANALOG_CHANNELS
The NUM_MSE1000_ANALOG_CHANNELS constant is the maximum number of channels available for an analog module.

Constant
const int NUM MSE1000 ANALOG CHANNELS= 2;

NUM_MSE1000_ ANALOG_VALUES_PER_CHANNEL

The NUM_MSE1000_ANALOG_VALUES_PER_CHANNEL constant is the number of data values returned for each channel of
the analog module.

Constant
const int NUM MSE1000 ANALOG VALUES PER CHANNEL = 2;

MAX_NUM_ANALOG_AVG_SAMPLES

The MAX_NUM_ANALOG_AVG_SAMPLES constant is the maximum number of samples that can be used when computing
the average voltage and current in the analog module.

Constant
const int MAX NUM ANALOG_AVG_SAMPLES = 100;

60 Library software

2.9 Interface methods

The interface methods are available for C++ only. Users of the C wrappers must create their own module chain by creating
instances of the modules and initializing them.

Mselnterface

Constructor
MseInterface();

addModule

The addModule method will create an instance of a new module of the type requested. The module IP must be passed in

because each module in the MSE has a different IP address. The new module will be added to the end of the moduleChain_.

Method
MseResults addModule
(

const MODULE ID moduleType,
const char* modulelp,
bool useAsync
)
Parameters
moduleType The type of module to create
modulelp The IP address of the module to connect to
useAsync True if the MSE should send asynchronous messages to the MSE1000_ASYNC_PORT

Return value
The return value delivers a status for the method call.

MseResults A response code representing whether the method succeeded

removeConnections
The removeConnections method empties the UDP client list used internally by the MSE library.

Method
void removeConnections () ;

HEIDENHAIN MSElibrary

61

Interface methods

Interface methods

createChain

The createChain method will perform a broadcast and wait for all of the responses from all of the modules. It will then create
an instance of a MseModule for each response and add it to the moduleChain_ array. The modules will then be re-ordered
based on their location in the chain. The modules can then be retrieved with the getModule(), getEndatModule(), getloMod-
ule(), get1VppModule(), or getPneumaticModule() methods. This method may take up to two minutes to complete based on
the number of modules in the chain and whether DHCP is enabled or not.

Method
MseResults createChain
(
const charx* clientIp,
unsigned short clientPort,
bool useAsync,
const charx* broadcastNetmask
)
Parameters
clientlp The IP address for the MSE to respond to for broadcast requests.
clientPort The port for the MSE to respond to for broadcast requests.
useAsync True if the MSE should send asynchronous messages to the MSE1000_ASYNC_PORT
broadcastNetmask The netmask to use to create the broadcast address.
Return value
MseResults A response code representing whether createChain was successful.

getChainCreationState

The getChainCreationState method is used to get the state of the chain creation initiated by the createChain method. The
state represents whether the chain creation is currently idle, broadcasting, ordering the chain, finished, or if it had an error.
The error can be determined by the response code of the createChain method.

Method
MSE CHAIN CREATION STATE getChainCreationState();

Return value
The return value delivers a MSE_CHAIN_CREATION_STATE enumeration representing the state of the chain creation.

getNumModules

The getNumModules method is used to get the number of modules in the chain.

Method
unsigned short getNumModules() ;

Return value
The return value delivers an unsigned short representing the number of modules in the chain.

getModule
The getModule method will return the requested module as a base MseModule. It is up to the caller to downcast the module

based on the type if needed. This method allows flexibility in that it can be called for any module and the logic can be per-
formed by the client code.

MseModule* getModule
(

const unsigned short moduleNumber
)

Return value
The return value delivers a pointer to the MseModule. A NULL pointer will be returned if the module is not in the chain.

62 Library software

getDeviceModule

The getDeviceModule method will return the requested module as a base MseDeviceModule. This method should be used if
the complexity in downcasting from getModule() is unnecessary. If the module requested is not of type MseDeviceModule,
a NULL pointer will be returned.

Method
MseDeviceModule* getDeviceModule
(
const unsigned short moduleNumber
);

Return value
The return value delivers a pointer to a MseDeviceModule. A NULL pointer will be returned if the module is not in the chain.

getEndatModule

The getEndatModule method will return the requested module as a MseEndatModule. This method should be used if the
complexity in downcasting from getModule() is unnecessary. If the module requested is not of type MseEndatModule, a
NULL pointer will be returned.

Method
MseEndatModule* getEndatModule
(
const unsigned short moduleNumber
)

Return value
The return value delivers a pointer to a MseEndatModule. A NULL pointer will be returned if the module is not in the chain or
if the module requested is not a MseEndatModule.

getloModule

The getloModule method will return the requested module as a MseloModule. This method should be used if the complexity
in downcasting from getModule() is unnecessary. If the module requested is not of type MseloModule, a NULL pointer will
be returned.

Method
MseIoModule* getIoModule
(

const unsigned short moduleNumber

)

Return value
The return value delivers a pointer to a MseloModule. A NULL pointer will be returned if the module is not in the chain or if
the module requested is not a MseloModule.

get1VppModule

The get1VppModule method will return the requested module as a Mse1VppModule. This method should be used if the
complexity in downcasting from getModule() is unnecessary. If the module requested is not of type Mse1VppModule, a
NULL pointer will be returned.

Method
MselVppModule* getlVppModule
(

const unsigned short moduleNumber
)

Return value

The return value delivers a pointer to a Mse1VppModule. A NULL pointer will be returned if the module is not in the chain or
if the module requested is not a Mse1VppModule.

HEIDENHAIN MSElibrary 63

Interface methods

Interface methods

getPneumaticModule

The getPneumaticModule method will return the requested module as a MsePneumaticModule. This method should be used
if the complexity in downcasting from getModule() is unnecessary. If the module requested is not of type MsePneumatic-
Module, a NULL pointer will be returned.

Method
MsePneumaticModule* getPneumaticModule

(

const unsigned short moduleNumber
);

Return value
The return value delivers a pointer to a MsePneumaticModule. A NULL pointer will be returned if the module is not in the
chain or if the module requested is nota MsePneumaticModule.

getAnalogModule

The getAnalogModule method will return the requested module as a MseAnalogModule. This method should be used if the
complexity in downcasting from getModule() is unnecessary. If the module requested is not of type MseAnalogModule, a
NULL pointer will be returned.

Method
MseAnalogModule* getAnalogModule
(

const unsigned short moduleNumber
)

Return value
The return value delivers a pointer to a MseAnalogModule. A NULL pointer will be returned if the module is not in the chain
or if the module requested is not a MseAnalogModule.

getLvdtModule

The getLvdtModule method will return the requested module as a MselLvdtModule. This method should be used if the com-
plexity in downcasting from getModule() is unnecessary. If the module requested is not of type MselLvdtModule, a NULL
pointer will be returned.

Method
MseLvdtModule* getLvdtModule
(
const unsigned short moduleNumber

)

Return value
The return value delivers a pointer to a MselLvdtModule. A NULL pointer will be returned if the module is not in the chain or if
the module requested is not a MselL.vdtModule.

getTtiModule

The getTtIModule method will return the requested module as a MseTtIModule. This method should be used if the complex-
ity in downcasting from getModule() is unnecessary. If the module requested is not of type MseTtIModule, a NULL pointer
will be returned.

Method
MseTt1lModule* getTtlModule
(

const unsigned short moduleNumber
);

Return value

The return value delivers a pointer to a MseTtIModule. A NULL pointer will be returned if the module is not in the chain or if
the module requested is not a MseTtIModule.

64 Library software

2.10 General methods and functions

The general methods and functions are provided for common functionality across all module types. The C++ methods and
the C functions are separated into two sections for easier lookup.

C++ methods

MseModule

The MseModule constructor instantiates and initializes a ModuleData structure and instantiates a MseProgramming object
for programming the modules.

Constructor
MseModule

void

initializeModule

The initializeModule method will configure the UDP messaging and fill in the moduleData_ structure with all the information
known from the module and it's devices. The moduleData_ is the private object representing the ModuleData class.

Method
virtual MseResults initializeModule

(

const charx* mseIpAddress
bool useAsync
)
Parameters
mselpAddress The MSE lp address
useAsync True if the MSE should send asynchronous messages to the MSE1000_ASYNC_PORT

Return value
The return value delivers a response code representing whether the initialization information was retrieved correctly.

initializeFirmware

The initializeFirmware method will open a connection for use in communicating to a module that is running out of the
bootloader. It differs from initializeModule in that it does not try to initialize module data because the information cannot be
obtained unless the firmware is loaded.

Method
virtual MseResults initializeFirmware

(

const char* mseIpAddress
);

Parameters
mselpAddress The MSE Ip address

Return value
The return value delivers a response code representing whether the initialization of the firmware succeeded.

HEIDENHAIN MSElibrary 65

General methods and functions

General methods and functions

getModuleType

The getModuleType method returns the module type information. This information is requested from the MSE and contains
the module type and number of axes on the module.

Method

MseResults getModuleType

(

Parameters
moduleType
hwid
hwRev

numAxes

Return value

MODULE ID* moduleType,
unsigned long* hwId,
unsigned char* hwRev,
unsigned shortx* numAxes

The type of module
The hardware ID of the PCBA
The revision of the PCBA

The number of axes

The return value delivers a response code representing whether the getModuleType command was sent.

getConfig

The getConfig method gets the configuration of the MSE. The configuration information consists of the IP address, input
connection status, bootloader version, and firmware version. The bootloader and firmware versions are also stored in the

moduleData_ structure.

Method
MseResults getConfig
(

Parameters
ipAddress
islnputConnected
blVersion

fw\ersion

Return value

char* ipAddress,
bool* isInputConnected,
char* blVersion,
char* fwVersion

The IP address of the module
Whether the input is connected
The bootloader version of the module

The firmware version of the module

The return value delivers a response code representing whether the config was read correctly.

66

Library software

getNumChannels
The getNumChannels method returns the number of channels in the module.

Method
unsigned short getNumChannels() ;

Return value
The return value delivers an unsigned char representing the number of channels.

getModuleData

The getModuleData method returns the ModuleData information. The ModuleData information is filled in when the initialize-
Module method is called.

Method
ModuleData getModuleDatal() ;

Return value

ModuleData A structure containing the module data information

getLeft

The getlLeft method is used to get the module location settings. The MSE may have multiple modules connected together
and this command can help determine the location of current one.

Method
MseResults getLeft

(
LeftData* leftData

);

Parameters

leftData The LeftData structure that is filled in with the values returned from the MSE.

Return value
The return value delivers a response code representing whether the getLeft command was sent.

HEIDENHAIN MSElibrary 67

General methods and functions

General methods and functions

getCounts

The getCounts method returns the counts of the measurement devices. If the option is set to COUNT_REQUEST_LATCHED,
the module will clear the latch after the position is read to allow for faster subsequent latching. This method returns just the
raw counts from the module.

This method should only be used for the 1Vpp module since the format of the counts is different for each module.

The EnDat module’s getCounts method should be used in order to get counts that separate the revolution bits from the posi-
tion bits, since the raw count value combines these.

The TTLs getCounts method differs since it only utilizes 4 bytes, whereas the 1 Vpp and EnDat utilize 8.

The LVDT uses the getVoltage method which will return the count value in addition to a voltage that represents an approxi-
mate voltage of the ADC.

Method
MseResults getCounts
(
unsigned long* counts,
unsigned short numChannels,
COUNT REQUEST OPTION option

Parameters
counts The counts returned from the devices
numChannels The number of channels to read into the counts parameter
option Whether to retrieve live or latched counts

Return value
The return value delivers a response code representing whether the getCounts was retrieved correctly.

setRotaryFormat

The setRotaryFormat method is used to set the rotary format that will be applied to the position calculated from the counts
in the derived class's getPositions method. This method is used by the EnDat, 1Vpp and TTL modules.

Method
void setRotaryFormat
(
const unsigned short& channel,
const ROTARY FORMATS& format
)

Parameters
channel The channel of the encoder to apply the rotary format to
format The ROTARY_FORMAT to apply

getRotaryFormat

The getRotaryFormat method is used to return the rotary format that will be applied to the position calculated from the
counts in the derived class’s getPositions method. This method is used by the EnDat, 1Vpp and TTL modules.

Method
ROTARY FORMAT getRotaryFormat
(

const unsigned short& channel
)

Parameters

channel The channel of the encoder that the rotary format will be applied to

Return value
ROTARY_FORMAT The rotary format that will be applied to the position

68 Library software

setDeviceOffset

The setDeviceOffset method is used to set an offset that will be applied to the position calculated from the counts in the
derived class's getPositions method. The offset is useful for applying a master position for an encoder. The offset is applied
before the rotary formatting and is in the user units set for the channel. This method is used by the EnDat, 1Vpp, TTL, Analog,
and LVDT modules.

Method
void setDeviceOffset

(

const unsigned short& channel,

const double& offset
);
Parameters
channel The channel of the device to apply the offset to
offset The offset to apply
getDeviceOffset

The getDeviceOffset method is used to return the offset that will be applied to the position calculated from the counts in the
derived class's getPositions method. This method is used by the EnDat, 1Vpp, TTL, Analog, and LVDT modules.

Method
double getDeviceOffset
(

const unsigned short& channel
);
Parameters

channel The channel of the encoder that the offset will be applied to

Return value

double The offset that will be applied to the position

setRight

The setRight method is used to set the input of the next module for use in ordering the module chain and allowing for mod-
ules to wait until the communication line is ready during DHCP requests.

Method
MseResults setRight
(

const bool setConnectOut
)
Parameters

setConnectOut A value of true sets the output pin high, false sets it low. Setting the pin high allows the
next module to communicate over the network during DHCP discovery and is useful when
determining the ordering of the modules.

Return value
The return value delivers a response code representing whether the setRight command was sent.

resetMse1000
The resetMse 1000 method sends a reset request to the MSE.

Method
MseResults resetMsel000() ;

Return value
The return value delivers a response code representing whether the reset command was sent.

HEIDENHAIN MSElibrary 69

General methods and functions

General methods and functions

program

The program method programs the module with the selected file and then waits for the reboot to finish. The modules must
not be in DHCP mode when programming because the IP address must be constant for the entire programming process.

Programming the MSEfirmware with a version > 1.0.2 requires that the MSEbootloader be at least version 1.0.2. The MSE-
bootloader and MSEfirmware cannot be programmed to a version prior to version 1.0.3 once they are version 1.0.3 or greater.
The versioning incompatibility is due to improvements in configuration data robustness.

Method
MseResults program
(
const char* filename,
bool isBootloader
)
Parameters
filename The file to program into the firmware
bool isBootloader True if the file to program is the bootloader, otherwise false

Return value
The return value delivers a response code representing whether the programming completed.

getProgrammingState

The getProgrammingState method returns the programming state. This method exists as a convenience for users of this
library.

Method
PROGRAMMING STATE ENUMS getProgrammingState () ;

Return value
The return value delivers a PROGRAMMING_STATE_ENUMS containing the programming state.

getProgrammingPercentComplete

The getProgrammingPercentComplete method returns the percent complete of the programming.The percent complete is
updated during the PROGRAMMING_STATE_DOWNLOADING state.

Method
double getProgrammingPercentComplete () ;

Return value
The return value delivers a double containing the percent complete.

showModuleType
The showModuleType method is used to return a string representation of the type based on the MODULE_ID enumeration.

Method
static char* showModuleType
(

MODULE_ID type
)
Parameters
type The MODULE_ID to stringify
Return value
string The string type representation of the MODULE_ID

70 Library software

showModuleld
The showModuleld method is used to return a string representation of the ID based on the MODULE_ID enumeration

Method
static char* showModuleId

(

MODULE_ID type
) ;
Parameters
type The MODULE_ID to stringify
Return value
string The string ID representation of the MODULE_ID

setlp
The setlp method sets the IP address of the module. This method also validates the strings passed in for errors.

Method
MseResults setlp
(

const char* address,
const char* netmask
);
Parameters
address The IP address to set the module to
netmask The netmask to set the module to

Return value
The return value delivers a response code representing whether the IP was set correctly.

setAsyncPort

The setAsyncPort method sets the UDP asynchronous port that the module will send broadcast, error, latching, and referenc-
ing commands to.

Method
MseResults setAsyncPort
(

const unsigned short* asynchronousPort
)

Parameters

asynchronousPort The port for the asynchronous communication. The UDP port must be between 1024 and 49151
(registered ports).

Return value
The return value delivers a response code representing whether the command was successful.

HEIDENHAIN MSElibrary A

General methods and functions

General methods and functions

getAsyncPort

The getAsyncPort method gets the UDP asynchronous port that the module will send broadcast, error, latching, and referenc-
ing commands to.

Method
MseResults getAsyncPort
(

unsigned shortx* asynchronousPort
)

Parameters

asynchronousPort A pointer to an unsigned short that will be filled in with the port for the asynchronous communi-
cation

Return value
The return value delivers a response code representing whether the command was successful.

setDhcp
The setDhcp method sets whether or not to use DHCP.

Method
MseResults setDhcp
(

unsigned char choice

)

Parameters

choice A value of 0 will disable DHCP 1 will enable it

Return value
The return value delivers a response code representing whether the setDhcp was set correctly.

broadcastOpenConnection

The broadcastOpenConnection method sends a broadcast message to open a connection to the MSE 1000 module. The
modules will all send back responses containing their IP address and other data in the form of a MSE1000ConnectResponse.
The total number of responses is also returned. The setBroadcastingNetmask method can be used to set the type of broad-
cast to perform. The modules will not be ordered.

Method
MseResults broadcastOpenConnection
(
const charx* clientIpAddress,
const unsigned short* port,
MSE1000ConnectResponse* connResponses,

unsigned shortx* numResponses
)
Parameters

clientlpAddress The IP address of the sender. This is needed in order to bind a socket for the modules to send
responses to.

port The UDP port of the sender needed for the bind

connResponses The responses to the broadcast. This must be an array of MSE1000ConnectResponses that is
large enough to hold MAX_NUM_MODULES of responses.

numResponses The number of modules that responded to the broadcast

72 Library software

setBroadcastingNetmask

The setBroadcastingNetmask method sets the netmask used during broadcasting. A netmask of “255.255.255.255" should
be used for a limited broadcast. A netmask of “255.255.255.07 “255.255.0.0" or “255.0.0.0" should be used for a directed
broadcast. A limited broadcast is limited to a single LAN and is received by all clients connected to that LAN. A directed
broadcast will be sent to all clients on a specific subnet.

Method
void setBroadcastingNetmask

(

const char* netmask
)

Parameters

netmask A char* in the form 255.255.255.0 that will be used for determining the broadcasting ad-
dress. A value of 255.255.255.255 will be used as the default.

restoreFactoryDefaults

The restoreFactoryDefaults method sends a broadcast to all modules that will reset the static IP address to 172.31.46.2 for
power supplies and 172.31.46.1 for all other modules. The modules will be set to DHCP addressing and if a DHCP server is
not present, each module will change back to static after a 1 minute timeout. The asynchronous port will be set to MSE1000_
ASYNC_PORT.

Method
void restoreFactoryDefaults
(
)

setUdpTimeout

The setUdpTimeout method sets the UDP timeout that is used when waiting for a response from a module. The setUdp-
Timeout method can be set from 50 ms to 10000 ms. The default is 800ms in order to handle the validation and backup
of the FRAM and FLASH memory during programming and setting of the IP address. Very large values are only useful for
debugging purposes. Values below the default may not allow enough time for the microcontroller to respond.

Method
void setUdpTimeout
(

long timeoutMs
);
Parameters
timeoutMs The timeout to wait for a UDP response in milliseconds
getUdpTimeout

The getUdpTimeout method gets the UDP timeout in milliseconds that is used when waiting for a response from a module.

Method
long getUdpTimeout
(
)

Return value

long The UDP timeout in milliseconds that is used when waiting for a response from a module

HEIDENHAIN MSElibrary 73

General methods and functions

General methods and functions

setUdpNumRetries

The setUdpNumRetries method sets the number of retries to use if a timeout occurs. The default is 0 and it can be set to as
high as 10.

Method
void setUdpNumRetries

(

short numRetries
);
Parameters
numRBetries The number of retries
getUdpNumRetries

The getUdpNumRetries method gets the number of retries to use if a timeout occurs.

Method
short getUdpNumRetries
(
)

Return value

short The number of retries to use if a timeout occurs

setNetworkDelay

The setNetworkDelay method sets the delay in milliseconds to use before each UDP message is sent to the module. A delay
less than 17 ms will utilize a busy loop so that an operating system context switch can be avoided, otherwise, a Sleep is used
which will give up priority to other processes that may need to run.

Method
void setNetworkDelay

(
short networkDelayMs

);
Parameters

networkDelayMs The number of milliseconds to delay. The value can be from 0 to 1000. The default is O.

getNetworkDelay
The getNetworkDelay method sets the delay in milliseconds to use before each UDP message is sent to the module.

Method
short getNetworkDelay
(
);
Return value

short The network delay in milliseconds to use before each UDP message is sent to the module

74 Library software

setLatch
The setLatch method is used to latch or unlatch channel data in the MSE.

Method
MseResults setLatch
(

const LATCH OPTIONS latchOption,
const LATCH CHOICE latchChoice
) ;
Parameters
latchOption The LATCH_OPTIONS to choose
latchChoice The enumerated latch number to select for setting or resetting
getLatch

The getlLatch method is used to get the status of the latches in the MSE 1000. An active latch will inform the client that
latched data is available or can be used as a signal. The latch is cleared when the data is read or the setLatch LATCH_
COUNT_RESET, LATCH_CHOICE_ALL method is called.

Method
MseResults getLatch
(

unsigned char* latchState,
const unsigned short size
)
Parameters
latchState An array that will hold the status of the latch states. Will store a 1 if the corresponding
latch is set, otherwise 0.
size The size of the latchState array passed in. Must be large enough to store all 5 latches.

getAdcValues

The getAdcValues method is used to get the ADC (Analog to digital conversion) values from the module.
The ADC values are used to get a digital representation of voltages and temperatures used in the module.

Method
MseResults getAdcValues
(

short* adcVals,
const unsigned short length
)
Parameters
adcVals The address where the ADC values will be returned
length The length of the adcVals array passed in (must be at least ADC_NUM_CHANNELS shorts

to store the entire response

HEIDENHAIN MSElibrary

75

General methods and functions

General methods and functions

getintegrity

The getintegrity method is used to get the system integrity values from the module. The values are returned masked in an
unsigned long. The INTEGRITY_ENUMS enumeration can be used to see what integrity value is currently out of specification.
The ranges array stores the warning and error ranges in the following order: Current warning, current error, 24V min error,
24V max error, 24V min warning, 24V max warning, 5V min error, 5V max error, 5V min warning, 5V max warning, tempera-
ture min error, temperature max error, temperature min warning, temperature max warning.

Method
MseResults getIntegrity
(

unsigned long* integrity,
double* ranges,
unsigned short numRanges
)
Parameters
integrity The address where the integrity masked values values will be stored
ranges A pointer to an array of doubles to store the ranges for the integrity checks
numRanges The size of the ranges array passed in (must hold at least NUM_INTEGRITY_RANGES
doubles
setAsyncMode

The setAsyncMode method is used to set the asynchronous mode of the module. Setting to asynchronous will allow for log-
ging,

footswitch updates, triggering updates, and EnDat encoder warning and error updates. Asynchronous updates will be sent to
the

MSE1000_ASYNC_PORT of the IP address that requested this method.

Method
MseResults setAsyncMode
(

bool useAsync
)

Parameters

useAsync True to enable asynchronous updates, false to disable

76 Library software

clearAllErrors

The clearAllErrors method is used to clear the systemintegrity as well as the encoder warnings and errors. |f warnings or er-
rors still persist, they will be immediately set again.

Method

MseResults clearAllErrors

clearintegrityErrors

(
);

The clearlntegrityErrors method is used to clear the module system integrity warnings and errors. If warnings or errors still
persist, they will be immediately set again.

Method

MseResults clearIntegrityErrors

enableDiags

(
)

The enableDiags method is used to set the diagnostics mode. The diagnostics mode affects the throughput of the data since
diagnostics will be performed while the counts are being updated. Diagnostics are performed once every 200 ms as long as
they are not set to DIAG_MODE_NONE.

Method

MseResults enableDiags

Parameters

choice

getLibraryVersion

(
const DIAG MODE OPTIONS choice

)

DIAG_MODE_FULL Enables function reserves (for Endat), errors and warnings
(for EnDat), control register status (EnDat, 1Vpp and TTL), and
system integrity (all modules)

DIAG_MODE_STATUS Enables errors and warnings (for EnDat), control register status
(EnDat, 1Vpp and TTL), and system integrity (all modules)

DIAG_MODE_MINIMAL Enables system integrity (all modules)

DIAG_MODE_NONE Will not monitor anything

The getLibraryVersion method is used to return the version of the library as a string.

Method

static char* getlLibraryVersion

HEIDENHAIN MSElibrary

(
);

77

General methods and functions

General methods and functions

C Functions
The common C functions can be found in the MseModuleWrapper.h file.

MseModuleCreate
Creates a MseModule object and returns a pointer to it.

Function
MseModulePtr MseModuleCreate
(
)

Return value
The return value delivers a pointer to the MseModule object that was created.

MseModuleDelete
Deletes the MseModule object that was passed in.

Function
void MseModuleDelete

(
MseModulePtr object

)

Parameters

object A pointer to the MseModule object that was created by the MseModuleCreate function

MseModulelnitialize
Initializes the MseModule object that was passed in.

Function
MSE_RESPONSE CODE MseModuleInitialize
(

MseModulePtr object,

char* mseIpAddress,

bool useAsync

)
Parameters

object A pointer to the MseModule object that was created by the MseModuleCreate function
mselpAddress The IP address of the module to initialize
useAsync Whether to enable asynchronous communication from the module

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

78

Library software

MseModuleGetLibraryVersion
Gets the version of the MSElibrary.

Function
void MseModuleGetLibraryVersion

(

char* version,
) ;
Parameters
version A pointer to the location where the MSElibrary version will be copied to. The location pointed to
should be at least 16 bytes to allow for future updates.

MseModuleGetModuleType
Gets the module type.

Function
MSE RESPONSE CODE MseModuleGetModuleType
(

MseModulePtr object,
MODULE ID* moduleType
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
moduleType A pointer to the location where the module type will be copied to

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetModuleErrorState
Gets the error state of the module. A value of True signifies that there is an error.

Function
MSE RESPONSE CODE MseModuleGetModuleErrorState
(

MseModulePtr object,
bool* errorState
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
errorState A pointer to the location where the error state will be copied to. A subsequent call to MseMod-

uleGetModuleErrors can be made to get the actual errors.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 79

General methods and functions

¢ MseModuleGetModuleErrors

c

O Gets the actual module errors.

=

g Function

= MSE RESPONSE CODE MseModuleGetModuleErrors

e (

=] MseModulePtr object,

g long* errors,

»n double* ranges,

o] short size

(o]) ;

£

=]

Q@ Parameters

E object A pointer to the MseModule object that was created by the MseModuleCreate function
E errors A pointer to the location where the errors will be copied to. The errors is a single long that can
Q be masked with the INTEGRITY_ENUMS to determine which error has occurred.

= : , : : :

Q ranges A pointer to the location where the ranges used to determine an error will be copied to. The
(U] ranges is an array that must be large enough to hold NUM_INTEGRITY_RANGES.

size The size of the ranges array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetAdcValues
Gets the voltage and temperature values for the module.

Function
MSE RESPONSE CODE MseModuleGetAdcValues
(

MseModulePtr object,
short* adcValues,
short size
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
adcValues A pointer to the location where the voltage and temperature values will be copied to. The ad-
cValues is an array that must be large enough to hold ADC_NUM_CHANNELS. The array can be
indexed using the ADC_OPTIONS enumeration.
size The size of the adcValues array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

80 Library software

MseModuleClearErrors
Clears the module errors and warnings.

Function
MSE RESPONSE CODE MseModuleClearErrors

(
MseModulePtr object

) ;
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleSetlpAddress
Sets the static IP address and netmask for the module.

Function
MSE RESPONSE CODE MseModuleSetIpAddress
(

MseModulePtr object,

char* ipAddress,

char* netmask

)
Parameters

object A pointer to the MseModule object that was created by the MseModuleCreate function
ipAddress The IP address to set
netmask The netmask to set

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetlpAddress
Gets the currently used IP address for the module.

Function
MSE RESPONSE CODE MseModuleGetIpAddress
(

MseModulePtr object,
char* ipAddress
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
ipAddress A pointer to the location where the IP address will be stored. Must be large enough to hold

SIZE_IP_ADDRESS bytes.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary

81

General methods and functions

General methods and functions

MseModuleGetlpStaticAddress
Gets the static IP address for the module.

Function
MSE RESPONSE CODE MseModuleGetIpStaticAddress
(

MseModulePtr object,
char* ipAddress
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
ipAddress A pointer to the location where the static IP address will be stored. Must be large enough to

hold SIZE_IP_ADDRESS bytes.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetNetmask
Gets the currently used netmask for the module.

Function
MSE RESPONSE CODE MseModuleGetNetmask
(

MseModulePtr object,
char¥* netmask
) i
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
ipAddress A pointer to the location where the netmask will be stored. Must be large enough

to hold SIZE_IP_ADDRESS bytes.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetNetmaskStatic
Gets the static netmask for the module.

Function
MSE RESPONSE CODE MseModuleGetNetmaskStatic
(

MseModulePtr object,
char¥* netmask
) ;
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
ipAddress A pointer to the location where the static netmask will be stored. Must be large enough

to hold SIZE_IP_ADDRESS bytes.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

82 Library software

MseModuleGetPort
Gets the UDP port for the module.

Function
MSE_RESPONSE_CODE MseModuleGetPort
(

MseModulePtr object,
short* port
) ;
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
ipAddress A pointer to the location where the UDP port will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleSetAsyncPort
Sets the UDP asynchronous port that the module will send broadcast, error, latching, and referencing commands to.

Method
MseResults MseModuleSetAsyncPort
(

MseModulePtr object,
const unsigned short* asynchronousPort
);
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function

asynchronousPort The port for the asynchronous communication. The UDP port must be between 1024 and 49151
(registered ports).

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetAsyncPort
Gets the UDP asynchronous port that the module will send broadcast, error, latching, and referencing commands to.

Method
MseResults MseModuleGetAsyncPort
(

MseModulePtr object,
unsigned shortx* asynchronousPort
);
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function

asynchronousPort A pointer to an unsigned short that will be filled in with the port for the asynchronous communi-
cation

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 83

General methods and functions

General methods and functions

MseModuleSetUsingDhcp
Sets the DHCP setting for the module.

Function
MSE RESPONSE CODE MseModuleSetUsingDhcp
(

MseModulePtr object,
bool isDhcp
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
isDhcp True to enable DHCP

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetUsingDhcp
Gets the DHCP setting for the module.

Function
MSE RESPONSE CODE MseModuleGetUsingDhcp
(

MseModulePtr object,
bool* isDhcp
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
isDhcp A pointer to the location where the DHCP setting will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetMacAddress
Gets the MAC address for the module.

Function
MSE RESPONSE CODE MseModuleGetMacAddress
(

MseModulePtr object,
char* macAddress
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
macAddress A pointer to the location where the MAC address will be stored. Must be large enough to hold

SIZE_MAC_ADDRESS bytes.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

84 Library software

MseModuleGetBootloaderVersion
Gets the bootloader version for the module.

Function
MSE RESPONSE CODE MseModuleGetBootloaderVersion
(

MseModulePtr object,
char* version
) ;
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
version A pointer to the location where the bootloader version will be stored. This must be large enough

to hold SIZE_BUILD_INFO bytes

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetFirmwareVersion
Gets the firmware version for the module.

Function
MSE RESPONSE CODE MseModuleGetFirmwareVersion
(

MseModulePtr object,
char* version
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
version A pointer to the location where the firmware version will be stored. This must be large enough

to hold SIZE_BUILD_INFO bytes

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetSerialNumber
Gets the serial number for the module.

Function
MSE RESPONSE CODE MseModuleGetSerialNumber
(

MseModulePtr object,
char* serialNumber
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
serialNumber A pointer to the location where the serial number will be stored. This must be large enough to

hold SIZE_SERIAL_NUMBER bytes.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 85

General methods and functions

General methods and functions

MseModuleReset
Reboots the module.

Function
MSE_RESPONSE_CODE MseModuleReset

(
MseModulePtr object,

);
Parameters

object A pointer to the MseModule object that was created by the MseModuleCreate function

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleShowType
Shows the textual representation of the module type.

Function
MSE RESPONSE CODE MseModuleShowType
(

MseModulePtr object,
char* type
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
type A pointer to the location where the type will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleShowld
Shows the textual representation of the module ID.

Function
MSE_RESPONSE_CODE MseModuleShowId
(

MseModulePtr object,
char* id
);
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
id A pointer to the location where the ID will be stored. This must be large enough to hold 10

bytes.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

86 Library software

MseModuleSetBroadcastingNetmask

Set the netmask used for the broadcast. A netmask of “255.255.255.255" should be used for a limited broadcast. A netmask
of “255.255.255.07 “255.255.0.0" or “255.0.0.0" should be used for a directed broadcast. A limited broadcast is limited to a
single LAN and is received by all clients connected to that LAN. A directed broadcast will be sent to all clients on a specific
subnet.

Function
MSE RESPONSE CODE MseModuleSetBroadcastingNetmask
(

MseModulePtr object,
char¥* netmask
);
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
netmask The netmask to be used for broadcasting. A value of 255.255.255.255 will be used as the de-

fault.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleSetUdpTimeout
Set the UDP timeout used for communication to the module.

Function
MSE RESPONSE CODE MseModuleSetUdpTimeout
(

MseModulePtr object,
long timeoutMs
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
timeoutMs The timeout to be used in milliseconds. Can be set from 50 to 10000. The default is 800ms in

order to handle the validation and backup of the FRAM and FLASH memory during program-
ming and setting of the IP address. Very large values are only useful for debugging purposes.
Values below the default may not allow enough time for the microcontroller to respond.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetUdpTimeout
Get the UDP timeout used for communication to the module.

Function
MSE RESPONSE CODE MseModuleGetUdpTimeout
(

MseModulePtr object,
long* timeoutMs
) ;
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
timeoutMs A pointer to the location where the timeout to be used in milliseconds will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 87

General methods and functions

General methods and functions

MseModuleSetUdpNumRetries
Set the number of retries to use when communicating to the module.

Function
MSE RESPONSE CODE MseModuleSetUdpNumRetries
(

MseModulePtr object,
short numRetries
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
numRetries The number of retries to use

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetUdpNumRetries
Get the number of retries to use when communicating to the module.

Function
MSE RESPONSE CODE MseModuleGetUdpNumRetries
(

MseModulePtr object,
short* numRetries
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
numRetries A pointer to the location where the number of retries to use will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleSetNetworkDelay
Set the delay to use between commands to the module. The value can be from 0 ms to 1000 ms and defaults to 0 ms.

Function
MSE RESPONSE CODE MseModuleSetNetworkDelay
(

MseModulePtr object,
short networkDelayMs
);
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function

networkDelayMs The network delay to use

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

88 Library software

MseModuleGetNetworkDelay
Get the delay to use between commands to the module.

Function
MSE RESPONSE CODE MseModuleGetNetworkDelay
(

MseModulePtr object,
short networkDelayMs
) ;
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function

networkDelayMs A pointer to the location where the network delay to use will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleBroadcast

Sends out a broadcast to obtain the IP addresses, netmasks, and ports of all the modules. The modulelpAddresses, module-
Netmasks, and modulePorts arrays must be large enough to hold MAX_NUM_MODULES. The modules will not be ordered.

Function
MSE RESPONSE CODE MseModuleBroadcast
(

MseModulePtr object,
char* clientIp
short clientPort
short* numResponses
char* moduleIpAddresses
char* moduleNetmasks
short* modulePorts
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
clientlp The IP address of the client
clientPort The UDP port of the client
numResponses A pointer to the location where the number of modules found is stored

modulelpAddresses A pointer to the location the the IP addresses of the modules are stored. The IP addresses will
be delimited by spaces.

moduleNetmasks A pointer to the location the the netmasks of the modules are stored. The netmasks will be
delimited by spaces.

modulePorts A pointer to the location where the module UDP ports are stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 89

General methods and functions

General methods and functions

MseModuleProgram
Programs the module with the selected file.
Programming the MSEfirmware with a version > 1.0.2 requires that the MSEbootloader be at least version 1.0.2. The MSE-

bootloader and MSEfirmware cannot be programmed to a version prior to version 1.0.3 once they are version 1.0.3 or greater.
The versioning incompatibility is due to improvements in configuration data robustness.

Function
MSE RESPONSE CODE MseModuleProgram
(

MseModulePtr object,

char* filename,

bool isBootloader

)
Parameters

object A pointer to the MseModule object that was created by the MseModuleCreate function
filename The file to program into the module
isBootloader True if the file being programmed is the MSEbootloader, false if it is the MSEfirmware

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetProgramState
Gets the programming state.

Function
MSE RESPONSE CODE MseModuleGetProgramState
(
MseModulePtr object,
PROGRAMMING STATE ENUMS* programState
)i

Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function
programState The state of the programming

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetProgramPercentComplete

Gets the programming percent complete. The percent complete is updated during the PROGRAMMING_STATE_DOWN-
LOADING state.

Function
MSE RESPONSE CODE MseModuleGetProgramPercentComplete
(

MseModulePtr object,
double* percentComplete
)
Parameters
object A pointer to the MseModule object that was created by the MseModuleCreate function

percentComplete The percent complete of the programming

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

90 Library software

MseModuleGetAsyncMsgType
Gets the asynchronous message type received from the module.

Function
MSE RESPONSE CODE MseModuleGetAsyncMsgType
(

char¥* msg,
UdpCmdType* code
) ;
Parameters
msg The asynchronous message received from the module
code The location where the message type will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetAsyncMsglpAddress
Gets the asynchronous IP address received from the module.

Function
MSE RESPONSE CODE MseModuleGetAsyncMsgIpAddress
(

char* msg,
char* ipAddress
) i
Parameters
msg The asynchronous message received from the module
ipAddress The location where the ip address of the module will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetAsyncMsgPort
Gets the asynchronous UDP port received from the module.

Function
MSE RESPONSE CODE MseModuleGetAsyncMsgPort
(

char* msg,
short* port
)
Parameters
msg The asynchronous message received from the module
port The location where the UDP port of the module will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary

General methods and functions

General methods and functions

MseModuleGetAsyncMsgDhcp
Gets the asynchronous DHCP state received from the module.

Function
MSE RESPONSE CODE MseModuleGetAsyncMsgDhcp
(

char¥* msg,
boolx* isDhcp
)
Parameters
msg The asynchronous message received from the module
isDhcp The location where the DHCP state of the module will be stored

Return value

The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetAsyncMsgMacAddress
Gets the asynchronous MAC address received from the module.

Function
MSE RESPONSE CODE MseModuleGetAsyncMsgMacAddress
(

char* msg,
char* macAddress
)
Parameters
msg The asynchronous message received from the module
macAddress The location where the MAC address of the module will be stored

Return value

The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetAsyncMsgNetmask
Gets the asynchronous netmask received from the module.

Function
MSE RESPONSE CODE MseModuleGetAsyncMsgNetmask
(

char* msg,
char~* netmask
);
Parameters
msg The asynchronous message received from the module
netmask The location where the netmask of the module will be stored

Return value

The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

92

Library software

MseModuleGetAsyncMsgSerialNumber
Gets the asynchronous serial number received from the module.

Function
MSE RESPONSE CODE MseModuleGetAsyncMsgSerialNumber
(

char¥* msg,
char* serialNumber
);
Parameters
msg The asynchronous message received from the module
serialNumber The location where the serial number of the module will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleGetAsyncMsgChannelStatus

Informs the listener that a warning, error, or reference complete has occurred. The listener must then read the channel status
or send a reference complete acknowledge in order to tell the module that the message has been received.

Function
MSE RESPONSE CODE MseModuleGetAsyncMsgChannelStatus
(

char* msg,
short* type,
short* channel
);
Parameters
msg The asynchronous message received from the module
type The type of channel status. 0 is currently not used, 1 is for warnings and errors, and 2 is for
reference complete.
channel The channel for the ‘reference complete’ type. This parameter is not used for warnings and er

rors.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 93

General methods and functions

General methods and functions

MseModuleGetAsyncMsgLatch
Informs the listener that a latch has occurred.

Function
MSE RESPONSE CODE MseModuleGetAsyncMsgLatch
(

char¥* msg,
char¥* latchvals
)
Parameters
msg The asynchronous message received from the module
latchVals The value of each of the latches. A value of 0 is not triggered, a value of 1 is triggered.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseModuleShowRespCode
Gets the string representation of the response code.

Function
MSE RESPONSE CODE MseModuleShowRespCode
(

char* response,
MSE_ RESPONSE CODE code
)
Parameters
response The location where the text representation of the MSE_RESPONSE_CODE will be stored
code The MSE_RESPONSE_CODE to get a string representation of

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

94 Library software

2.11 Device methods

Device methods are only available for C++ usage.

MseDeviceModule

The MseDeviceModule method creates an array of EncoderInfo objects for use in storing encoder information for each chan-
nel.

Constructor
MseDeviceModule () ;

getEncoderinfo
The getEncoderinfo method returns the Encoderinfo object used to store the encoder information for a specific channel.

Method
bool getEncoderInfo
(

EncoderInfo* encoderInfo,
const unsigned short channel
)
Parameters
encoderlinfo, A pointer to a Encoderinfo structure to hold the encoder information requested
channel The channel to get the encoder data of indexed from 0

Return value
The return value delivers true if getEncoderinfo passed and false if the channel requested is an invalid index.

setEncoderinfo
The setEncoderinfo method sets the encoderinfo_ object to the desired values.

Method
bool setEncoderInfo

(

EncoderInfo* encoderInfo,
const unsigned short channel
)
Parameters
encoderinfo A pointer to a encoderinfo structure that has the encoder information to set
channel The channel to set the encoder data to indexed from 0

Return value
The return value delivers true if setEncoderinfo passed and false if the channel requested is an invalid index.

HEIDENHAIN MSElibrary 95

Device methods

Device methods

getCountingDirection

Gets the counting direction for a specific channel. True for positive and false for negative. Positive is when the count direction
matches the traverse direction.

Method
bool getCountingDirection
(
bool* isPositive,
const unsigned short channel
)
Parameters
isPositive A pointer where the counting direction will be stored
channel The channel to get the counting direction from indexed from 0

Return value
The return value delivers False if the channel is out of range or if the pointer is NULL.

setErrorCompensation

Sets the linear error compensation for a specific channel to the desired multiplier. This value will be applied to the position
when getPositions is called.

Method
bool setErrorCompensation

(

double value,
const unsigned short channel
)
Parameters
value The multiplier to use for error compensation of the position value
channel The channel to set indexed from 0

Return value
The return value delivers False if the channel is out of range.

getErrorCompensation
Gets the linear error compensation for a specific channel.
Method
bool getErrorCompensation
(
double* value,
const unsigned short channel
)
Parameters
value The multiplier used for error compensation of the position value
channel The channel to get indexed from 0

Return value
The return value delivers False if the channel is out of range or if the pointer is NULL.

96 Library software

setScaling

Sets the device scaling for a specific channel to the desired multiplier. This value will be applied to the position when getPosi-
tions is called. This differs from the error compensation since the scaling can be used for gear ratios and other factors.

Method
bool setScaling
(

const double value,
const unsigned short channel
)
Parameters
value The multiplier to use for scaling of the position value
channel The channel to set indexed from 0

Return value
The return value delivers False if the channel is out of range.

getScaling

Gets the device scaling for a specific channel. This value will be applied to the position when getPositions is called. This dif-
fers from the error compensation since the scaling can be used for gear ratios and other factors.

Method
bool getScaling
(

double* value,
const unsigned short channel
)
Parameters
value The multiplier used for scaling of the position value
channel The channel to get indexed from 0

Return value
The return value delivers False if the channel is out of range or if the pointer is NULL.

HEIDENHAIN MSElibrary 97

Device methods

Device methods

getResolution

Gets the computed encoder resolution for a specific channel. This value is in mm/count for linear encoders and degrees/

count for rotary.

Method
bool getResolution

(
double*

const unsigned short

);

Parameters
resolution The resolution of the encoder
channel The channel to get indexed from 0

Return value

resolution,
channel

The return value delivers False if the channel is out of range or if the pointer is NULL.

getEncoderType

Gets the encoder type for a specific channel.

Method
bool getEncoderType
(
ENCODER TYPES ENUM*
const unsigned short

)

Parameters
type The type of the encoder
channel The channel to get indexed from 0

Return value

type,
channel

The return value delivers False if the channel is out of range or if the pointer is NULL.

getUom

Gets the units of measure for a specific channel.

Method
bool getUom

UoM*
const unsigned short

Parameters
uom The units of measure of the encoder
channel The channel to get indexed from 0

Return value

uom,
channel

The return value delivers False if the channel is out of range or if the pointer is NULL.

98

Library software

enableErrorChecking
The enableErrorChecking method sets whether error checking will be done on the specified channel. The error checking re-

fers to the function reserves, errors, and warnings for EnDat modules, and the counter errors for the 1Vpp and TTL modules.

Method
MseResults enableErrorChecking
(
const bool choice,
const unsigned short channel
)
Parameters
choice True if error checking should be enabled
channel The channel to enable or disable error checking on indexed from 0

Return value
The return value delivers a response code representing whether the error checking command was sent correctly.

getChannelStatus

The getChannelStatus method gets the error status of a 1Vpp or TTL encoder. The COUNTER_STATUS enumeration has the
mask values to compare the status with to determine which error occurred.

Method
MseResults getChannelStatus
(

const unsigned short channel,
unsigned char* channelStatus
)
Parameters
channel The channel to get the status of indexed from 0
channelStatus Holds the masked status of the channel. The status can be obtained by masking this value

with the COUNTER_STATUS enumeration.

Return value
The return value delivers a response code representing whether the getChannelStatus command was sent correctly.

clearErrorsAndWarnings

The clearErrorsAndWarnings method clears errors and warnings. The EnDat modules will clear the errors from the EnDat
protocol. The 1Vpp and TTL modules will clear the errors through the counter status register.

Method
MseResults clearErrorsAndWarnings

(

unsigned short channel
) i
Parameters

channel The channel to clear errors and warnings for indexed from 0

Return value
The return value delivers a response code representing whether the warnings and errors were cleared correctly.

HEIDENHAIN MSElibrary 99

Device methods

Device methods

setLatchDebouncing

The setLatchDebouncing method sets the number of milliseconds to use for debouncing the hardware latch input. The input
defaults to 10ms on bootup of the module and is based on having a footswitch attached. If another device is attached that
has a faster or slower debounce time, modifying this value will speed up or slow down latch triggering.

Method
MseResults setLatchDebouncing

(

const unsigned char choice,
const unsigned short timeMs
)
Parameters
choice 0 for the first footswitch input, 1 for the second
timeMs The number of milliseconds to use to debounce the requested input. Can be between 0 -
20ms.

100 Library software

2.12 EnDat methods and functions

C++ methods and the C functions are separated into two sections for easier lookup.
C++ methods

Constructor
MseEndatModule (void) ;

initializeModule

The initializeModule method will fill in the moduleData_ and deviceData_ structure with all the information known from the
module and it's devices.

Method
virtual MseResults initializeModule

(

const char* mselIpAddress
bool useAsync
)
Parameters
mselpAddress The IP address of the module to initialize
useAsync True if the MSE should send asynchronous messages to the MSE_ASYNC_PORT

Return value
The return value delivers a response code representing whether the initialization information was retrieved correctly.

getPositions

The getPositions method is used to return the positions and the current revolutions for the attached encoders. Linear en-
coders just return the positions. The position of a linear encoder is returned in user units. The position of a rotary encoder

is returned in degrees. The resulting position is determined by first multiplying the count by the error compensation, then
multiplying by the scaling, then computing the position based on the resolution, then converting to the correct UOM, then
adding the device offset, and finally formatting the rotary position if necessary. The error compensation is set with the setEr
rorCompensation method of the base class, it defaults to 1.0. The scaling is set with the setScaling method of the base
class, it defaults to 1.0. The resolution is known internally since the EnDat encoders maintain this value. The UOM is set with
setUom, it defaults to UOM_DEGREES for rotary encoders and UOM_MM for linear encoders. The device offset is set with
the setDeviceOffset method of the base class, it defaults to 0.0. The rotary format can be changed with the setRotaryFormat
method, it defaults to ROTARY_FORMAT_360.

Method
MSELIB_EXPORT MseResults getPositions
(
double* pos,
long* currentRevolution,
const unsigned short& numChannels,
COUNT_REQUEST OPTION option

Parameters
pos The position(s) scaled from counts to the correct unit of measurement
currentRevolution The current revolution of a rotary encoder
numChannels The number of channels to read and store into the array passed in with pos and current-
Revolution
option The type of position to return. If COUNT_REQUEST_LATCHED is requested, the latching

in the module will be reset after the value is read.

HEIDENHAIN MSElibrary 101

EnDat methods and functions

EnDat methods and functions

getCounts

Gets the counts of all the attached encoders. Rotary encoders will also return the current revolution.

Method
MSELIB EXPORT MseResults getCounts

Parameters

counts
currentRevolution

numChannels

option

Return value
The return value delivers a response code representing whether the counts were retrieved correctly.

getWarnings

(

unsigned long* counts,
long* currentRevolution,
unsigned short numChannels,

COUNT_REQUEST OPTION option

The counts returned from the encoders
The current revolution of a rotary encoder

The number of channels to read and store into the array passed in with counts and currentRevo-
lution

The type of count to return. If COUNT_REQUEST_LATCHED is requested, the latching in the
module for the desired latchChoice will be reset after the value is read.

The getWarnings method returns the encoder warnings as an array of ENDAT_ERROR_RESULT values. The warnings in the
array are ordered as indexed in the ENDAT_WARNINGS enumeration.

Method
MseResults getWarnings

Parameters

channel

warnings

size

Return value
The return value delivers a response code representing whether the warnings were retrieved correctly.

102

(

unsigned short channel,
ENDAT ERROR RESULT* warnings,
unsigned char size

The channel to read the warnings from

A pointer to an array of ENDAT_ERROR_RESULT values that the warnings returned from
the devices will be saved to

The number of ENDAT_ERROR_RESULT values in the warnings array passed in

Library software

getErrors

The getErrors method returns the encoder errors as an array of ENDAT_ERROR_RESULT values. The errors are ordered as
indexed in the ENDAT_ERRORS enumeration.

Method
MseResults getErrors

(

unsigned short channel,
ENDAT ERROR RESULT* errors,
unsigned char size
);
Parameters
channel The channel to read the errors from indexed from 0
errors A pointer to an array of ENDAT_ERROR_RESULT values that the errors returned from the
devices will be saved to
size The number of ENDAT_ERROR_RESULT values in the errors array passed in

Return value
The return value delivers a response code representing whether the errors were retrieved correctly.

getDiag

The getDiag method returns the encoder function reserves that are supported and their values for the requested channel. The

ENDAT_DIAG enumeration can be used to index into the diagVals parameter to access the desired value.

Method
MseResults getDiag
(

const unsigned char channel,

unsigned char* diagVals,

unsigned char arrLength

);
Parameters

channel The channel to read the diagnostic from indexed from 0
diagVals The method reserves supported along with their values from the requested channel
arrLength The size of the diagVals array passed in (must be >= ENDAT_DIAG_COUNT)

Return value
The return value delivers a response code representing whether the diags were retrieved correctly.

HEIDENHAIN MSElibrary

103

EnDat methods and functions

EnDat methods and functions

getDeviceData
The getDeviceData method returns the device data for a specified channel.

Method
bool getDeviceData

(

DeviceData* data,
const unsigned short channelNumber
)
Parameters
data The DeviceData for the requested channel
channelNumber The channel to get the DeviceData of indexed from 0

Return value
True if the DeviceData was returned, otherwise false.

getDistinguishableRevolutions
Gets the distinguishable revolutions of a rotary encoder for a specified channel.

Method
bool getDistinguishableRevolutions

(

short* numRevs,
const unsigned short channelNum
)
Parameters
numRevs The distinguishable revolutions for the requested channel
channelNum The channel to get indexed from 0

Return value
False if the channel is out of range or the pointer is NULL.

104

Library software

getEncoderName
Gets the encoder name of an encoder for a specified channel.

Method
bool getEncoderName

(

char~* name,
const unsigned short channelNum
) ;
Parameters
name The encoder name for the requested channel
channelNum The channel to get indexed from 0

Return value
False if the channel is out of range or the pointer is NULL.

getEncoderld
Gets the encoder ID of an encoder for a specified channel.

Method
bool getEncoderId
(

char* id,
const unsigned short channelNum
);
Parameters
id The encoder ID for the requested channel
channelNum The channel to get indexed from 0

Return value
False if the channel is out of range or the pointer is NULL.

getSerialNumber
Gets the serial number of an encoder for a specified channel.

Method
bool getSerialNumber

(

char* serialNumber,
const unsigned short channelNum
);
Parameters
serialNumber The serial number for the encoder of the requested channel
channelNum The channel to get indexed from 0

Return value
False if the channel is out of range or the pointer is NULL.

HEIDENHAIN MSElibrary

105

EnDat methods and functions

EnDat methods and functions

setUom

Sets the unit of measurement of an encoder for a specified channel. This value will be applied to the position when getPosi-
tions is called.

Method
bool setUom

UOM uom,
const unsigned short channel
)
Parameters
uom The unit of measurement for the encoder of the requested channel
channel The channel to get indexed from 0

Return value
False if the channel is out of range.

getChannelPresence
The getChannelPresence method returns the encoder connection status for a channel on the module.

Method
MseResults getChannelPresence

(

unsigned char* isConnected,
unsigned short channel
)
Parameters
isConnected True if the channel is populated
channel The channel to request indexed from 0

Return value
The return value delivers a response code representing whether the channel presence were retrieved correctly.

setEncoderinfo

The setEncoderinfo method sets the encoder information values in the MseDeviceModule base class to the desired values
for the specified channel. The resolution is not modified because it is already known for EnDat modules.

Method
bool setEncoderInfo

(

EncoderInfo* encoderInfo,
const unsigned short channel
)
Parameters
encoderinfo A EncoderInfo structure holding the encoder information values for the desired channel of
this module
channel The channel to set the encoder information of indexed from 0

Return value
The return value delivers true if the encoder information is set or false if channel is greater than the number of channels in
the module.

106 Library software

C Functions

The EnDat C functions can be found in the MseEndatModuleWrapper.h file.

MseEndatModuleCreate
Creates a MseEndatModule object and returns a pointer to it.

Function
MseEndatModulePtr MseEndatModuleCreate
(
)

Return value
The return value delivers a pointer to the MseEndatModule object that was created.

MseEndatModuleDelete
Deletes the MseEndatModule object that was passed in.

Function
void MseEndatModuleDelete

(
MseEndatModulePtr object

)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
MseEndatModulelnitialize
Initializes the MseEndatModule object that was passed in.

Function
MSE RESPONSE CODE MseEndatModuleInitialize
(

MseEndatModulePtr object,
char* mseIpAddress,
bool useAsync
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
mselpAddress The IP address of the module to initialize
useAsync Whether to enable asynchronous communication from the module

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 107

EnDat methods and functions

EnDat methods and functions

MseEndatModuleGetNumChannels
Gets the number of channels on the module.

Function
MSE RESPONSE CODE MseEndatModuleGetNumChannels
(

MseEndatModulePtr object,
unsigned shortx* numChannels
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
numChannels A pointer to the location where the number of channels will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetChannelPresence
Gets whether there is an encoder connected to the selected channel.

Function
MSE RESPONSE CODE MseEndatModuleGetChannelPresence
(

MseEndatModulePtr object,
bool* isConnected,
short channel
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
isConnected A pointer to the location where the connection status is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetEncoderType
Gets the type of encoder connected to the selected channel.

Function
MSE RESPONSE CODE MseEndatModuleGetEncoderType
(

MseEndatModulePtr object,
ENCODER_TYPES ENUM* type,
short channel
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
type A pointer to the location where the encoder type is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

108 Library software

MseEndatModuleSetUom
Sets the unit of measurement of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MseEndatModuleSetUom
(

MseEndatModulePtr object,
UOM uom,
short channel
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
uom The unit of measurement of the encoder connected to the channel
channel The channel to set indexed from 0

MseEndatModuleGetUom
Gets the unit of measurement of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MseEndatModuleGetUom
(

MseEndatModulePtr object,
UOM* uom,
short channel
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
uom A pointer to the location where the encoder unit of measurement is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleSetErrorCompensation
Sets the linear error compensation of the encoder connected to the selected channel.

Function
MSE_RESPONSE CODE MseEndatModuleSetErrorCompensation
(

MseEndatModulePtr object,
double val,
short channel
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
val The error compensation to use for the channel
channel The channel to set indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 109

EnDat methods and functions

EnDat methods and functions

MseEndatModuleGetErrorCompensation
Gets the linear error compensation of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MseEndatModuleGetErrorCompensation
(

MseEndatModulePtr object,
double* val,
short channel
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
val A pointer to the location where the error compensation is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleSetScaling

Sets the device scaling for a specific channel to the desired multiplier. This value will be applied to the position when MseEn-
datGetPositions is called. This differs from the error compensation since the scaling can be used for gear ratios and other
factors.

Function
MSE RESPONSE CODE MseEndatModuleSetScaling
(

MseEndatModulePtr object,
const double val,
const unsigned short channel
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
val The scaling to use for the channel
channel The channel to set indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetScaling

Gets the device scaling for a specific channel. This value will be applied to the position when MseEndatGetPositions is called.
This differs from the error compensation since the scaling can be used for gear ratios and other factors.

Function
MSE RESPONSE CODE MseEndatModuleGetScaling
(

MseEndatModulePtr object,
double* val,
const unsigned short channel
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
val A pointer to the location where the scaling is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

110 Library software

MseEndatModuleGetCountingDirection
Gets the counting direction of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MseEndatModuleGetCountingDirection
(

MseEndatModulePtr object,
bool* isPositive,
short channel
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
isPositive A pointer to the location where the counting direction is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetDistinguishableRevolutions
Gets the distinguishable revolutions of a rotary encoder connected to the selected channel.

Function
MSE RESPONSE CODE MseEndatModuleGetDistinguishableRevolutions
(

MseEndatModulePtr object,
short* numRevs,
short channel
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
numRevs A pointer to the location where the distinguishable revolutions will be stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary m

EnDat methods and functions

EnDat methods and functions

MseEndatModuleGetResolution
Gets the resolution, in mm/count for linear encoders and degrees/count for rotary encoders, of the encoder connected to the

selected channel.

Function

MSE RESPONSE CODE MseEndatModuleGetResolution

Parameters

object

resolution

channel

Return value

(

MseEndatModulePtr object,
double* resolution,
short channel

A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion

A pointer to the location where the encoder resolution will be stored

The channel to get indexed from 0

The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetCounts

Gets the encoder counts for all the channels. The position of a linear encoder, in mm, or a rotary encoder, in degrees, can be
obtained by multiplying the counts by the resolution value obtained from MseEndatModuleGetResolution.

Function

MSE RESPONSE CODE MseEndatModuleGetCounts

Parameters

object

counts

currentRevolution

numChannels

option

Return value

(

MseEndatModulePtr object,

unsigned long* counts,

long* currentRevolution,
short numChannels,

COUNT REQUEST OPTION option

A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion

A pointer to the location where the counts will be stored. This is an array that must be large
enough to store MAX_CHANNELS_PER_MODULE.

A pointer to the location where the current revolution of a rotary encoder will be stored. This is
an array that must be large enough to store MAX_CHANNELS_PER_MODULE.

The size of the counts and currentRevolution arrays passed in
Whether to get the latest or the latched counts

The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

12

Library software

MseEndatModuleGetPositions

Gets the encoder positions for all the channels.

The resulting position is determined by first multiplying the count by the error compensation, then multiplying by the scaling,
then computing the position based on the resolution, then converting to the correct UOM, then adding the device offset, and
finally formatting the rotary position if necessary.

The error compensation is set with the MseEndatModuleSetErrorCompensation method of the base class, it defaults to 1.0.
The scaling is set with the MseEndatModuleSetScaling method of the base class, it defaults to 1.0.

The resolution is known internally since the EnDat encoders maintain this value.

The UOM is set with MseEndatModuleSetUom, it defaults to UOM_DEGREES for rotary encoders and UOM_MM for linear
encoders.

The device offset is set with the MseEndatModuleSetDeviceOffset method of the base class, it defaults to 0.0.

The rotary format can be changed with the MseEndatModuleSetRotaryFormat method, it defaults to ROTARY_FORMAT_360.

Function
MSE RESPONSE CODE MseEndatModuleGetPositions
(

MseEndatModulePtr object,

double* pos,

long* currentRevolution,
short numChannels,

COUNT_REQUEST OPTION option

Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
pos A pointer to the location where the positions will be stored. This is an array that must be large

enough to store MAX_CHANNELS_PER_MODULE.

currentRevolution A pointer to the location where the current revolution of a rotary encoder will be stored. This is
an array that must be large enough to store MAX_CHANNELS_PER_MODULE.

numChannels The size of the counts and currentRevolution arrays passed in

option Whether to get the latest or the latched positions

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleSetRotaryFormat

The MseEndatModuleSetRotaryFormat method is used to set the rotary format that will be applied to the position calculated
from the counts in the MseEndatModuleGetPositions function.

Function
MSE RESPONSE CODE MseEndatModuleSetRotaryFormat
(

MseEndatModulePtr object,
unsigned short channel,
ROTARY FORMAT format
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
channel The channel of the encoder to apply the rotary format to
format The ROTARY_FORMAT to apply

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 113

EnDat methods and functions

EnDat methods and functions

MseEndatModuleGetRotaryFormat

The MseEndatModuleGetRotaryFormat method is used to return the rotary format that will be applied to the position calcu-
lated from the counts in the MseEndatModuleGetPositions function.

Function
MSE RESPONSE CODE MseEndatModuleGetRotaryFormat
(

MseEndatModulePtr object,
unsigned short channel
ROTARY FORMAT* format
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
channel The channel of the encoder that the rotary format will be applied to
format A pointer to the location where the rotary format will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleSetDeviceOffset

The MseEndatModuleSetDeviceOffset method is used to set the offset that will be applied to the position calculated from
the counts in the MseEndatModuleGetPositions function.

Function
MSE RESPONSE CODE MseEndatModuleSetDeviceOffset
(

MseEndatModulePtr object,
unsigned short channel,
double offset
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
channel The channel of the encoder to apply the offset to
offset The offset to apply

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetDeviceOffset

The MseEndatModuleGetDeviceOffset method is used to return the offset that will be applied to the position calculated from
the counts in the MseEndatModuleGetPositions function.

Function
MSE_RESPONSE CODE MseEndatModuleGetDeviceOffset
(

MseEndatModulePtr object,
unsigned short channel
double* offset
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
channel The channel of the encoder that the offset will be applied to
offset A pointer to the location where the offset will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

14 Library software

MseEndatModuleSetLatch
Sets or clears the desired latch for the module chain.

Function
MSE_RESPONSE_CODE MseEndatModuleSetLatch
(

MseEndatModulePtr object,
LATCH OPTIONS option,
LATCH CHOICE latchChoice
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
option Set or reset the module chain latch. Set is only used on a base module. Reset will clear the latch
and must be called on the base module first followed by each additional module.
latchChoice The type of latch to set. Clearing a latch will clear all latches in the base module. Non-base mod-

ules only know about being triggered or not and the base module is used to determine which
trigger occurred.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetLatches

Gets the latches that are active. The base module can differentiate between three software latches and two footswitch
latches. All other modules only know if they have been latched or not.

Function
MSE RESPONSE CODE MseEndatModuleGetLatches
(

MseEndatModulePtr object,
char* latchState,
short size
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
latchState A pointer to the location where the latch state will be stored. This is an array that must be large
enough to store NUM_LATCH_TYPES. The non-base modules will only utilize the first byte.
size The size of the latchState array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 115

EnDat methods and functions

EnDat methods and functions

MseEndatModuleGetModuleErrorState

Gets the error state of the module. A value of True signifies that there is an error. Refer to System integrity on page 227 for
more information.

Function
MSE RESPONSE CODE MseEndatModuleGetModuleErrorState
(

MseEndatModulePtr object,
bool* errorState
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
errorState A pointer to the location where the error state will be copied to. A subsequent call to MseEndat-

ModuleGetModuleErrors can be made to get the actual errors.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetModuleErrors
Gets the actual module errors. Refer to System integrity on page 227 for more information.

Function
MSE RESPONSE CODE MseEndatModuleGetModuleErrors
(

MseEndatModulePtr object,
long* errors,
double* ranges,
short size
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
errors A pointer to the location where the errors will be copied to. The errors is a single long that can
be masked with the INTEGRITY_ENUMS to determine which error has occurred.
ranges A pointer to the location where the ranges used to determine an error will be copied to. The
ranges is an array that must be large enough to hold NUM_INTEGRITY_RANGES.
size The size of the ranges array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetChannelErrorState
Gets the encoder error state of a channel. An errorState of 1 signifies an error.

Function
MSE RESPONSE CODE MseEndatModuleGetChannelErrorState
(

MseEndatModulePtr object,
bool~* errorState,
short channel
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
errorState A pointer to the location where the error state will be copied to. A subsequent call to MseEndat-
ModuleGetEndatErrors can be made to get the actual errors.
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

116 Library software

MseEndatModuleGetEndatErrors
Gets the encoder error of a channel.

Function
MSE RESPONSE CODE MseEndatModuleGetEndatErrors
(

MseEndatModulePtr object,
ENDAT ERROR RESULT* errors,
short size,
short channel
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
errors A pointer to the location where the errors will be stored. The errors is an array used to store the
status of each type of error. The array must be large enough to hold NUM_ENDAT_ERRORS.
size The size of the errors array passed in
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetChannelWarningState
Gets the encoder warning state of a channel. A warningState of 1 signifies a warning.

Function
MSE RESPONSE CODE MseEndatModuleGetChannelWarningState
(

MseEndatModulePtr object,
boolx* warningState,
short channel
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
warningStat A pointer to the location where the warning state will be copied to. A subsequent call to MseEn-
datModuleGetEndat\Warning can be made to get the actual warnings.
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 17

EnDat methods and functions

EnDat methods and functions

MseEndatModuleGetEndatWarnings
Gets the encoder warnings of a channel.

Function
MSE RESPONSE CODE MseEndatModuleGetEndatWarnings

Parameters

object

warnings

size

channel

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

(

MseEndatModulePtr object,
ENDAT ERROR RESULT* warnings,
short size,
short channel

A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion

A pointer to the location where the warnings will be stored. The warnings is an array used to
store the status of each type of warning. The array must be large enough to hold NUM_EN-
DAT_WARNINGS.

The size of the warnings array passed in

The channel to get indexed from 0

MseEndatModuleClearErrors
Clears the module and channel errors and warnings.

Function
MSE RESPONSE CODE MseEndatModuleClearErrors

Parameters

object

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

(
MseEndatModulePtr object

)

A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion

MseEndatModuleGetEncoderName
Gets the name of the encoder attached to a channel.

Function
MSE RESPONSE CODE MseEndatModuleGetEncoderName

Parameters

object

encoderName

channel

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

118

(

MseEndatModulePtr object,
char~* encoderName,
short channel

A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion

A pointer to the location where the encoder name will be stored

The channel to get indexed from 0

Library software

MseEndatModuleGetEncoderld
Gets the ID of the encoder attached to a channel.

Function
MSE RESPONSE CODE MseEndatModuleGetEncoderId
(

MseEndatModulePtr object,
char~* encoderId,
short channel
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
encoderld A pointer to the location where the encoder ID will be stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetEncoderSerialNumber
Gets the ID of the encoder attached to a channel.

Function
MSE RESPONSE CODE MseEndatModuleGetEncoderSerialNumber
(

MseEndatModulePtr object,
char* serialNumber,
short channel
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
serialNumber A pointer to the location where the encoder serial number will be stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleSetLatchDebouncing
Sets the latch debouncing used on the footswitch lines in the base module.

Function
MSE RESPONSE CODE MseEndatModuleSetLatchDebouncing
(

MseEndatModulePtr object,
char choice,
short timeMs
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
choice 0 for the first footswitch input and 1 for the second
timeMs The number of milliseconds to debounce the input. Can be from 0 - 20 ms.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 119

EnDat methods and functions

EnDat methods and functions

MseEndatModuleEnableDiags

Sets the diagnostic mode for the channels and module. See the Diagnostics Mode section of this document for more infor
mation.

Function
MSE RESPONSE CODE MseEndatModuleEnableDiags
(

MseEndatModulePtr object,
DIAG MODE_ OPTIONS choice
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
choice The desired level of diagnostics

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleGetDiags
Gets the EnDat function reserves for an encoder.

Function
MSE RESPONSE CODE MseEndatModuleGetDiags
(

MseEndatModulePtr object,
char* diagVals,
short size,
short channel
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
diagVals A pointer to the location where the diagnostic values will be stored. Must be large enough
to hold ENDAT_DIAG_COUNT. The ENDAT_DIAG enumeration can be used to index into the
diagVals array.
size The size of the diagVals array
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

120 Library software

MseEndatModuleGetAdcValues
Gets the voltage and temperature values for the module.

Function
MSE RESPONSE CODE MseEndatModuleGetAdcValues
(

MseEndatModulePtr object,
short* adcVals,
short sizel
);
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
adcVals A pointer to the location where the voltage and temperature values will be stored. Must be
large enough to hold ADC_NUM_CHANNELS. The ADC_OPTIONS enumeration can be used to
index into the adcVals array.
size The size of the adcVals array

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseEndatModuleEnableErrorChecking

Sets whether checking of the function reserves will be done on the specified channel. The channel defaults to enabled on
power up of the module and will be checked as long as the channel is populated and the error checking is enabled. The func-
tion reserves can be checked with the MseEndatModuleGetDiags function.

Function
MSE RESPONSE CODE MseEndatModuleEnableErrorChecking
(

MseEndatModulePtr object,
const bool choice,
const unsigned short channel
)
Parameters
object A pointer to the MseEndatModule object that was created by the MseEndatModuleCreate func-
tion
choice True to enable error checking, false to disable
channel The channel to enable or disable error checking on indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful

HEIDENHAIN MSElibrary 121

EnDat methods and functions

1Vpp methods and functions

2.13 1Vpp methods and functions

C++ methods and the C functions are separated into two sections for easier lookup.

C++ methods

Constructor
MselVppModule (void) ;

initializeModule

The initializeModule method is used to initialize a 1Vpp module. It calls the MseDeviceModule::initializeModule() and then
calls the MseDeviceModule::setEncoderInfo() with default values.

Method
MseResults initializeModule

(

const char* mselIpAddress,
bool useAsync
)
Parameters
mselpAddress The IP address of the module to initialize
useAsync True if the MSE should send asynchronous messages (for notification of footswitch
pressed)
getDiag

The getDiag method is used to return the diagnostic values of the requested channel. The diagVals is an array

of doubles that holds the values enumerated in the VPP_VOLTAGE_FEEDBACK enumeration. The ideal diagnostic values for
the A and B channels should be between -0.5V and +0.5 V. The A and B values can be plotted in a graph with A as the X and
B as the Y in order to show a Lissajou figure. The Lissajou figure should look like a circle with 1Vpp amplitude but the graph

will need to have many samples that occur while the encoder is moving. The enableAnalogDiag method must first be called
for the required channel before the diagnostics can be retrieved.

Method
MseResults getDiag
(

const unsigned char channel,

double* diagVals,

unsigned char arrLength

)
Parameters

channel The channel to read the diagnostic from
diagVals The diagnostic values returned from the module for the requested channel
arrLength The size of the diagVals array passed in (must be >=VPP_VOLTAGE_NUM)

122 Library software

enableAnalogDiag

The enableAnalogDiag method is used to set whether the analog diagnostics for the desired channel should be performed
or not. This will start collecting the A and B signals for the desired channel and allow the values to be read with the getDiag
command. Only 1 channel can be enabled at a time.

Method
MseResults enableAnalogDiag
(

const unsigned char channel,
const bool enable
);
Parameters
channel The channel to enable or disable the diagnostics of indexed from 0
enable True to enable, false to disable

getPositions

The getPositions method is used to return the positions of the encoders in user units. If the option is set to COUNT_RE-
QUEST_LATCHED, the module will clear the latch after the position is read to allow for faster subsequent latching. The rotary
formats for each rotary encoder can be set first with the setRotaryFormat method. The default rotary format is ROTARY_
FORMAT_360. The resulting position is determined by first multiplying the count by the error compensation, then multiplying
by the scaling, then computing the position based on the resolution, then converting to the correct UOM, then adding the
device offset, and finally formatting the rotary position if necessary. The error compensation is set with the setErrorCompen-
sation method of the base class, it defaults to 1.0. The scaling is set with the setScaling method of the base class, it defaults
to 1.0. The resolution is calculated based on the setLineCount or setSignalPeriod values. The UOM is set with setUom, it
defaults to UOM_RAW_COUNTS and getPositions will not do any position calculations until set. The device offset is set with
the setDeviceOffset method of the base class, it defaults to 0.0. The rotary format can be changed with the setRotaryFormat
method, it defaults to ROTARY_FORMAT_360.

Method
MseResults getPositions
(
double* pos,
unsigned short numChannels,
COUNT REQUEST OPTION option

Parameters
pos A pointer to a buffer for storing the positions. The positions will be scaled from
counts to the correct unit of measurement. The pointer must point to an array
that is large enough to store MAX_CHANNELS_PER_MODULE.
numChannels The number of channels to read and store into the array passed in with pos
option The type of position to return

HEIDENHAIN MSElibrary 123

1Vpp methods and functions

1Vpp methods and functions

setUom

The setUom method sets the unit of measurement to the desired value. This value will be used when computing the position
when getPositions() is called.

Method
bool setUom

UOM uom,
const unsigned short channel
)
Parameters
uom The unit of measurement to use for computing the position value
channel The channel to set the UOM of indexed from 0

Return value
False if the channel is out of range

setEncoderType

The setEncoderType method sets the type of encoder to the desired value. This value will be used when computing the posi-
tion when getPositions() is called.

Method
bool setEncoderType
(
ENCODER_TYPES ENUM encoderType,
const unsigned short channel
)
Parameters
encoderType The type of encoder to use for computing the position value
channel The channel to set the encoder type of indexed from 0

Return value
False if the channel is out of range.

setLineCount

The setLineCount method sets the line count used for a rotary encoder to the desired value. This value will be used when
computing the position when getPositions() is called.

Method
bool setLineCount

(

unsigned long lineCount,
const unsigned short channel
)
Parameters
lineCount The line count of the rotary encoder to use for computing the position value
channel The channel to set the line count of indexed from O

Return value
False if the channel is out of range.

124 Library software

getLineCount
Gets the line count used for a rotary encoder.

Method
bool getLineCount
(

unsigned long* lineCount,
const unsigned short channel
) ;
Parameters
lineCount A pointer to the location where the line count of the rotary encoder will be stored
channel The channel to get indexed from 0

getSignalPeriod
Gets the signal period used for a linear encoder.

Method
bool getSignalPeriod
(

unsigned short* signalPeriod,
const unsigned short channel
)
Parameters
signalPeriod A pointer to the location where the signal period of the linear encoder will be stored
channel The channel to get indexed from 0

setSignalPeriod

The setSignalPeriod method sets the signal period used for a linear encoder to the desired value. This value will be used
when computing the position when getPositions() is called.

Method
bool setLineCount

(

unsigned short signalPeriod,
const unsigned short channel
);
Parameters
signalPeriod The signal period of the linear encoder to use for computing the position value
channel The channel to set the signal period of indexed from 0

Return value
False if the channel is out of range.

HEIDENHAIN MSElibrary

125

1Vpp methods and functions

2 setCountingDirection
O The setCountingDirection method sets the counting direction to the desired value. This value will be used when computing
W= the position when getPositions() is called.
(*]
g Method
e bool setCountingDirection
< (
g bool positive,
»n const unsigned short channel
o])
()
f, Parameters
qE’ positive True if the encoder should count in the direction of the traversal
a channel The channel to set the counting direction of indexed from 0
Q.
Return value
v False if the channel is out of range.

initAbsolutePosition

The initAbsolutePosition method will tell the module to start obtaining absolute positions utilizing reference marks. This
method will cause all readings to be invalid until the reference mark is crossed.

Method
MseResults initAbsolutePosition

(

const unsigned char channel,
const REFERENCE MARK ENUM refMarkType,
const unsigned short value
)
Parameters
channel The channel to start absolute referencing for indexed from 0
refMarktype The type of reference mark utilized by the encoder. A value of REFERENCE_MARK_NONE
will not try an obtain an absolute position
value The signal period for a linear encoder and line count for a rotary encoder

Return value
The return value delivers a response code representing whether the initAbsolutePosition command was sent correctly.

isReferencingComplete
The isReferencingComplete method will check if referencing is complete for the specified channel.

Method
MseResults isReferencingComplete

(

const unsigned char channel,
boolx* isComplete
) ;
Parameters
channel The channel to check to determine if referencing is complete indexed from 0
isComplete True if referencing is complete, otherwise false

Return value
The return value delivers a response code representing whether the isReferencingComplete command was sent correctly.

126 Library software

acknowledgeAbsolutePosition

The acknowledgeAbsolutePosition method will send an acknowledge to the module for the specified channel. The acknowl-
edge tells the module that the asynchronous referencing complete has been received for a specific channel. The module will
keep sending asynchronous messages every 5 seconds if the acknowledge is not received. This method only needs to be
called if the module is in asynchronous mode.

Method
MseResults acknowledgeAbsolutePosition
(
const unsigned char channel
)

Parameters

channel The channel to acknowledge reception of the referencing complete indexed from 0

Return value
The return value delivers a response code representing whether the command was successful.

getReferencingState

Gets the state of the referencing for the desired channel. This method should be called after isReferencingComplete is true or
before acknowledgeAbsolutePosition is sent in order to check if referencing succeeded. Referencing succeeds if the refMark-
State is REF_MARK_FINISHED.

Method
MseResults getReferencingState

(

const unsigned char channel,
REF MARK STATE* refMarkState
)
Parameters
channel The channel to get the referencing state indexed from 0
refMarkState The state of the referencing. See the REF_MARK_STATE enumeration for more information.

Return value
The return value delivers a response code representing whether the command was successful.

getSignalType

Gets the signal type of the encoder. The signal type is detected when the module is first powered on. The signal type can
also be set with setSignalType.

Method
MseResults getSignalType
(

const unsigned short channel,
SIGNAL TYPE* signalType
)
Parameters
channel The channel to get indexed from 0
signalType The type of signal the encoder uses. This will be 1 Vpp or 11 yApp.

Return value
The return value delivers a response code representing whether the command was successful.

HEIDENHAIN MSElibrary 127

1Vpp methods and functions

1Vpp methods and functions

setSignalType

Sets the signal type of the encoder. The signal type is detected and set when the module is first powered on. The signal can
be set with this method in case of an error in the auto-detection.

Method
MseResults setSignalType
(

const unsigned short channel,
const SIGNAL TYPE signalType
)
Parameters
channel The channel to set indexed from 0
signalType The type of signal the encoder uses. This can be 1 Vpp or 11 pApp.

Return value
The return value delivers a response code representing whether the command was successful.

detectSignalType

Detects the signal type of the encoder. The signal type will be set to the detected value. The signal type is first detected and
set when the module is first powered on. The signal type can be set explicitly with setSignalType.

Method
MseResults detectSignalType
(

const unsigned short channel,
SIGNAL TYPE* signalType
)
Parameters
channel The channel to detect indexed from 0
signalType The type of signal detected. This will be 1 Vpp or 11 pApp.

Return value
The return value delivers a response code representing whether the command was successful.

C Functions

The 1Vpp C functions can be found in the Mse1VppModuleWrapper.h file.

Mse1VppModuleCreate
Creates a Mse1VppModule object and returns a pointer to it.

Function
MselVppModulePtr MselVppModuleCreate
(
)

Return value
The return value delivers a pointer to the Mse1VppModule object that was created.

Mse1VppModuleDelete
Deletes the Mse1VppModule object that was passed in.

Function
void MselVppModuleDelete

(
MselVppModulePtr object

)

Parameters

object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion

128 Library software

Mse1VppModaulelnitialize
Initializes the Mse1VppModule object that was passed in.

Function
MSE RESPONSE CODE MselVppModuleInitialize
(

MselVppModulePtr object,
char¥* mselIpAddress,
bool useAsync
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
mselpAddress The IP address of the module to initialize
useAsync Whether to enable asynchronous communication from the module

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetNumChannels
Gets the number of channels on the module.

Function
MSE RESPONSE CODE MselVppModuleGetNumChannels
(

MselVppModulePtr object,
unsigned shortx* numChannels
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
numChannels A pointer to the location where the number of channels will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleSetEncoderType
Sets the type of encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleSetEncoderType
(

MselVppModulePtr object,
ENCODER_TYPES ENUM type,
short channel
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
type The type of encoder connected to the channel
channel The channel to set indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 129

1Vpp methods and functions

2 Mse1VppModuleGetEncoderType
O Gets the type of encoder connected to the selected channel.
=
g Function
= MSE RESPONSE CODE MselVppModuleGetEncoderType
e (
o MselVppModulePtr object,
g ENCODER TYPES ENUM* type,
short channel
N
ﬁ) 4
()
f, Parameters
o object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
E tion
& type A pointer to the location where the encoder type is stored
‘2 channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleSetUom
Sets the unit of measurement of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleSetUom
(

MselVppModulePtr object,
UOM uom,
short channel
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
uom The unit of measurement of the encoder connected to the channel
channel The channel to set indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetUom
Gets the unit of measurement of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleGetUom
(

MselVppModulePtr object,
UOoM* uom,
short channel
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
uom A pointer to the location where the encoder unit of measurement is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

130 Library software

Mse1VppModuleSetErrorCompensation
Sets the linear error compensation of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleSetErrorCompensation
(

MselVppModulePtr object,
double val,
short channel
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
val The error compensation to apply when requesting a position
channel The channel to set indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetErrorCompensation
Gets the linear error compensation of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleGetErrorCompensation
(

MselVppModulePtr object,
double* val,
short channel
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
val A pointer to the location where the error compensation is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleSetScaling

Sets the device scaling for a specific channel to the desired multiplier. This value will be applied to the position when
Mse1VppGetPositions is called. This differs from the error compensation since the scaling can be used for gear ratios and
other factors.

Function
MSE RESPONSE CODE MselVppModuleSetScaling
(

MselVppModulePtr object,
const double val,
const unsigned short channel
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
val The scaling to use for the channel
channel The channel to set indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 131

1Vpp methods and functions

1Vpp methods and functions

Mse1VppModuleGetScaling

Gets the device scaling for a specific channel. This value will be applied to the position when Mse1VppGetPositions is called.
This differs from the error compensation since the scaling can be used for gear ratios and other factors.

Function
MSE RESPONSE CODE MselVppModuleGetScaling
(

MselVppModulePtr object,
double* val,
const unsigned short channel
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
val A pointer to the location where the scaling is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleSetCountingDirection
Sets the counting direction of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleSetCountingDirection
(

MselVppModulePtr object,
bool isPositive,
short channel
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
val True for positive and false for negative
channel The channel to set indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

132 Library software

Mse1VppModuleGetCountingDirection
Gets the counting direction of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleGetCountingDirection
(

MselVppModulePtr object,
bool* isPositive,
short channel
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
val A pointer to the location where the counting direction is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetResolution

Gets the resolution of the encoder connected to the selected channel. The resolution is computed internally based on the line
count or signal period. The resolution is in mm/count for linear encoders and degrees/count for rotary encoders.

Function
MSE RESPONSE CODE MselVppModuleGetResolution
(

MselVppModulePtr object,
double* resolution,
short channel
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
resolution A pointer to the location where the encoder resolution will be stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetCounts

Gets the encoder counts for all the channels. The position of a linear encoder, in mm, or a rotary encoder, in degrees, can be
obtained by multiplying the counts by the resolution value obtained from Mse1VppModuleGetResolution.

Function
MSE_RESPONSE_ CODE MselVppModuleGetCounts
(

MselVppModulePtr object,
unsigned long* counts,
short numChannels,

COUNT_ REQUEST OPTION option

Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
counts A pointer to the location where the counts will be stored. This is an array that must be large
enough to store MAX_CHANNELS_PER_MODULE.
numChannels The size of the counts array passed in
option Whether to get the latest or the latched counts

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 133

1Vpp methods and functions

Mse1VppModuleGetPositions

Gets the encoder positions for all the channels. Refer to the 1Vpp getPositions C++ method on page 123 for more informa-
tion.

The resulting position is determined by first multiplying the count by the error compensation, then multiplying by the scaling,
then computing the position based on the resolution, then converting to the correct UOM, then adding the device offset, and
finally formatting the rotary position if necessary.

The error compensation is set with the Mse1VppModuleSetErrorCompensation function, it defaults to 1.0. The scaling is set
with the Mse1VppModuleSetScaling function, it defaults to 1.0.

The resolution is calculated based on the Mse1VppModuleSetLineCount or Mse1VppModuleSetSignalPeriod values.

The UOM is set with Mse1VppModuleSetUom, it defaults to UOM_RAW_COUNTS and Mse1VppModuleGetPositions will
not do any position calculations until set.

The device offset is set with the Mse1VppModuleSetDeviceOffset function, it defaults to 0.0.

The rotary format can be changed with the Mse1VppModuleSetRotaryFormat function, it defaults to ROTARY_FORMAT_360.

Function
MSE RESPONSE CODE MselVppModuleGetPositions
(

1Vpp methods and functions

MselVppModulePtr object,
double* pos,
short numChannels,

COUNT_REQUEST OPTION option

Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
pos A pointer to the location where the positions will be stored. This is an array that must be large
enough to store MAX_CHANNELS_PER_MODULE.
numChannels The size of the counts array passed in
option Whether to get the latest or the latched positions

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleSetRotaryFormat

The Mse1VppModuleSetRotaryFormat method is used to set the rotary format that will be applied to the position calculated
from the counts in the Mse1VppModuleGetPositions function.

Function
MSE RESPONSE CODE MselVppModuleSetRotaryFormat
(

MselVppModulePtr object,
unsigned short channel,
ROTARY FORMAT format
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
channel The channel of the encoder to apply the rotary format to
format The ROTARY_FORMAT to apply

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

134 Library software

Mse1VppModuleGetRotaryFormat

The Mse1VppModuleGetRotaryFormat method is used to return the rotary format that will be applied to the position calcu-
lated from the counts in the Mse1VppModuleGetPositions function.

Function
MSE RESPONSE CODE MselVppModuleGetRotaryFormat
(

MselVppModulePtr object,
unsigned short channel
ROTARY FORMAT* format
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
channel The channel of the encoder that the rotary format will be applied to
format A pointer to the location where the rotary format will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleSetDeviceOffset

The Mse1VppModuleSetDeviceOffset method is used to set the offset that will be applied to the position calculated from
the counts in the Mse1VppModuleGetPositions function.

Function
MSE RESPONSE CODE MselVppModuleSetDeviceOffset
(

MselVppModulePtr object,
unsigned short channel,
double offset
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
channel The channel of the encoder to apply the offset to
offset The offset to apply

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetDeviceOffset

The Mse1VppModuleGetDeviceOffset method is used to return the offset that will be applied to the position calculated from
the counts in the Mse1VppModuleGetPositions function.

Function
MSE_RESPONSE_ CODE MselVppModuleGetDeviceOffset
(

MselVppModulePtr object,
unsigned short channel
double* offset
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate
function
channel he channel of the encoder that the offset will be applied to
offset A pointer to the location where the offset will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 135

1Vpp methods and functions

1Vpp methods and functions

Mse1VppModuleSetLatch
Sets or clears the desired latch for the module chain.

Function
MSE RESPONSE CODE MselVppModuleSetLatch
(

MselVppModulePtr object,
LATCH_OPTIONS option,
LATCH_CHOICE latchChoice
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
option Set or reset the module chain latch. Set is only used on a base module. Reset will clear the latch

and must be called on the base module first followed by each additional module.

latchChoice The type of latch to set. Clearing a latch will clear all latches in the base module. Non-base mod-
ules only know about being triggered or not and the base module is used to determine which
trigger occurred.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetLatches

Gets the latches that are active. The base module can differentiate between three software latches and two footswitch
latches. All other modules only know if they have been latched or not.

Function
MSE RESPONSE CODE MselVppModuleGetLatches
(

MselVppModulePtr object,
char* latchState,
short size
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
latchState A pointer to the location where the latch state will be stored. This is an array that must be large
enough to store NUM_LATCH_TYPES. The non-base modules will only utilize the first byte.
size The size of the latchState array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetModuleErrorState

Gets the error state of the module. A value of True signifies that there is an error. Refer to System integrity on page 227 for
more information.

Function
MSE RESPONSE CODE MselVppModuleGetModuleErrorState
(

MselVppModulePtr object,
bool* errorState
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
errorState A pointer to the location where the error state will be copied to. A subsequent call to

Mse1VppModuleGetModuleErrors can be made to get the actual errors.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

136 Library software

Mse1VppModuleGetModuleErrors
Gets the actual module errors. Refer to System integrity on page 227 for more information.

Function
MSE RESPONSE CODE MselVppModuleGetModuleErrors.
(

MselVppModulePtr object,
long* errors,
double* ranges,
short size
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
errors A pointer to the location where the errors will be copied to. The errors is a single long that can
be masked with the INTEGRITY_ENUMS to determine which error has occurred.
ranges A pointer to the location where the ranges used to determine an error will be copied to. The
ranges is an array that must be large enough to hold NUM_INTEGRITY_RANGES.
size The size of the ranges array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetChannelErrorState

Gets the encoder error state of a channel. An errorState of 1 signifies an error. The encoder errors are enumerated in the
COUNTER_STATUS.

Function
MSE RESPONSE CODE MselVppModuleGetChannelErrorState
(

MselVppModulePtr object,
bool* errorState,
short channel
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
errorState A pointer to the location where the error state will be copied to. A subsequent call to
Mse1VppModuleGetChannelStatus can be made to get the actual errors.
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetChannelStatus

Gets the encoder error status of a channel. The COUNTER_STATUS can be masked with status to determine the channel
status.

Function
MSE RESPONSE CODE MselVppModuleGetChannelStatus
(

MselVppModulePtr object,
char* status,
short channel
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
status A pointer to the location where the channel status will be copied to.
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 137

1Vpp methods and functions

Mse1VppModuleClearErrors
Clears the module and channel errors and warnings.

Function
MSE RESPONSE CODE MselVppModuleClearErrors
(
MselVppModulePtr object
);

Parameters

object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion

ethods and functions

E Return value
% The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

‘2 Mse1VppModuleSetLatchDebouncing
Sets the latch debouncing used on the footswitch lines in the base module.

Function
MSE RESPONSE CODE MselVppModuleSetLatchDebouncing
(

MselVppModulePtr object,
char choice,
short timeMs
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
choice 0 for the first footswitch input and 1 for the second
timeMs The number of milliseconds to debounce the input. Can be from 0 -20 ms.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleEnableDiags

Sets the diagnostic mode for the channels and module. See the Diagnostics Mode section of this document for more infor
mation.

Function
MSE RESPONSE CODE MselVppModuleEnableDiags
(

MselVppModulePtr object,
DIAG MODE OPTIONS choice
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
choice The desired level of diagnostics

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

138 Library software

Mse1VppModuleGetAdcValues
Gets the voltage and temperature values for the module.

Function
MSE RESPONSE CODE MselVppModuleGetAdcValues
(

MselVppModulePtr object,
short* adcVals,
short size
) ;
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
adcVals A pointer to the location where the voltage and temperature values will be stored. Must be
large enough to hold ADC_NUM_CHANNELS. The ADC_OPTIONS enumeration can be used to
index into the adcVals array.
size The size of the adcVals array

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleEnableAnalogDiag

Sets the diagnostic mode for the analog A and B channels of an encoder. The module can only monitor the diagnostics of 1
channel at a time.

Function
MSE RESPONSE CODE MselVppModuleEnableAnalogDiag
(

MselVppModulePtr object,
bool enable,
short channel
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
enable True to enable monitoring of the diagnostics
channel The channel to monitor indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetAnalogDiag
Gets the A and B channel data of an encoder.

Function
MSE RESPONSE CODE MselVppModuleGetAnalogDiag
(

MselVppModulePtr object,
double* diagVals,
short size,
short channel
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
diagVals A pointer to the location where the A and B voltage data values will be stored. Must be large
enough to hold VPP_VOLTAGE_NUM
size The size of the diagVals array
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 139

1Vpp methods and functions

1Vpp methods and functions

Mse1VppModuleSetLineCount
Sets the line count of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleSetLineCount

Parameters

object

lineCount

channel

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

(

MselVppModulePtr object,
long lineCount,
short channel

A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion

The line count of a rotary encoder

The channel to set indexed from 0

Mse1VppModuleGetLineCount
Gets the line count of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleGetLineCount

Parameters

object

lineCount

channel

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

(

MselVppModulePtr object,
long* lineCount,
short channel

A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion

A pointer to the location where the line count is stored

The channel to get indexed from 0

Mse1VppModuleSetSignalPeriod
Sets the signal period of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleSetSignalPeriod

Parameters

object

signalPeriod

channel

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

140

(

MselVppModulePtr object,
short signalPeriod,
short channel

A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion

The signal period of a linear encoder

The channel to set indexed from 0

Library software

Mse1VppModuleGetSignalPeriod
Gets the signal period of the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleGetSignalPeriod
(

MselVppModulePtr object,
short* signalPeriod,
short channel
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
signalPeriod A pointer to the location where the signal period is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleStartReferencing
Starts the referencing for the encoder connected to the selected channel.

Function
MSE RESPONSE CODE MselVppModuleStartReferencing
(

MselVppModulePtr object,
short channel,
REFERENCE _MARK ENUM refMarkType,
unsigned short value
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
channel The channel to start referencing on indexed from 0
refMarkType The type of referencing used by the encoder
value The signal period or line count used for the referencing

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleGetReferencingComplete
Gets whether the referencing is complete for the specified encoder.

Function
MSE RESPONSE CODE MselVppModuleGetReferencingComplete
(

MselVppModulePtr object,
short channel,
boolx* isComplete
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
channel The channel to get indexed from 0
isComplete A pointer to the location where the status of the referencing is stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 141

1Vpp methods and functions

1Vpp methods and functions

Mse1VppModuleAcknowledgeAbsolutePosition
Sends an acknowledge to the module informing it that the client received the asynchronous referencing message.

Function
MSE RESPONSE CODE MselVppModuleAcknowledgeAbsolutePosition
(

MselVppModulePtr object,
short channel
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
channel The channel to acknowledge the referencing of indexed from 0

Mse1VppModuleGetReferencingState

Gets the state of the referencing for the desired channel. This method should be called after isReferencingComplete is true or
before acknowledgeAbsolutePosition is sent in order to check if referencing succeeded. Referencing succeeds if the refMark-
State is REF_MARK_FINISHED.

Method
MseResults MselVppModuleGetReferencingState
(

MselVppModulePtr object,
const unsigned char channel,
REF_MARK STATE* refMarkState
);
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
channel The channel to get the referencing state indexed from 0
refMarkState A pointer to the location where the state of the referencing will be stored. See the REF_MARK_

STATE enumeration for more information.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppModuleEnableErrorChecking

Sets whether error checking will be done on the specified channel. The channel defaults to enabled on power up of the
module and will be checked as long as the channel is populated and the error checking is enabled. The channel status can be
checked with the Mse1VppModuleGetChannelStatus when error checking is enabled.

Function
MSE RESPONSE CODE MselVppModuleEnableErrorChecking
(

MselVppModulePtr object,
const bool choice,
const unsigned short channel
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
choice True to enable error checking, false to disable
channel The channel to enable or disable error checking on indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

142 Library software

Mse1VppGetSignalType

Gets the signal type of the encoder. The signal type is detected when the module is first powered on. The signal type can
also be set with setSignalType.

Method
MSE RESPONSE CODE MselVppGetSignalType
(

MselVppModulePtr object,
const unsigned short channel,
SIGNAL TYPE* signalType
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
channel The channel to get indexed from 0
signalType The type of signal the encoder uses. This will be 1 Vpp or 11 yApp.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppSetSignalType

Sets the signal type of the encoder. The signal type is detected and set when the module is first powered on. The signal can
be set with this function in case of an error in the auto-detection.

Method
MSE RESPONSE CODE MselVppSetSignalType
(

MselVppModulePtr object,
const unsigned short channel,
const SIGNAL TYPE signalType
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate func-
tion
channel The channel to set indexed from 0
signalType The type of signal the encoder uses. This can be 1 Vpp or 11 pApp.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

Mse1VppDetectSignalType

Detects the signal type of the encoder. The signal type will be set to the detected value. The signal type is first detected and
set when the module is first powered on. The signal type can be set explicitly with setSignalType.

Method
MSE RESPONSE CODE MselVppDetectSignalType
(

MselVppModulePtr object,
const unsigned short channel,
SIGNAL TYPE* signalType
)
Parameters
object A pointer to the Mse1VppModule object that was created by the Mse1VppModuleCreate
function
channel The channel to detect indexed from 0
signalType The type of signal detected. This will be 1 Vpp or 11 pApp.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 143

1Vpp methods and functions

I/0 methods and functions

2.14 1/0 methods and functions

C++ methods and the C functions are separated into two sections for easier lookup.

C++ Methods

Constructor
MseIoModule (void) ;

initializeModule

The initializeModule method is used to initialize an I/O module. It calls the MseModule::initializeModule() and then calls set-
Modulelnitialized (true) if the initialization passes. The number of channels is set to
NUM_MSE_IO_INPUTS + NUM_MSE_IO_OUTPUTS.

Method
MseResults initializeModule

(

const char* mseIpAddress,
bool useAsync
)
Parameters
mselpAddress The IP address of the module to initialize
useAsync True if the MSE should send asynchronous messages
setOutputs

The setOutputs method is used to set the output of the /O module to the desired values.

Method
MseResults setOutputs
(
const unsigned char* output
);
Parameters
output A pointer to an unsigned char, each output in the I/O module will be set to the correspond-

ing bit in the char. The char can only set output 1,2,3 and 4 in the module.

Return value

MseResults A response code representing whether the setOutputs command was sent

144 Library software

setOutput
The setOutput method is used to set an individual output of the I/O module to the desired value.

Method
MseResults setOutput
(

unsigned char pin,
bool val
)
Parameters
pin An unsigned char representing the pin to set to the desired value. Acceptable values are 1
to NUM_MSE_IO_OUTPUTS.
val A boolean representing whether to set the pin high or low
Return value
MseResults A response code representing whether the setOutput command was sent

getOutputs
The getOutputs method is used to get the outputs of the I/O module.

Method
MseResults getOutputs
(
unsigned char* outputs
);
Parameters
outputs A character where the output settings of the I/O module will be stored. Bit O will hold
output 1 and bit 3 will hold output 4.
Return value

MseResults A response code representing whether the getOutputs command was completed

HEIDENHAIN MSElibrary 145

I/0 methods and functions

I/0 methods and functions

getinputs
The getlnputs method is used to get the inputs of the I1/0O module.

Method
MseResults getInputs
(

unsigned char* inputs
)
Parameters

inputs A character where the input settings of the I/O module will be stored. Bit O will hold input
1 and bit 3 will hold input 4.

Return value

MseResults A response code representing whether the getinputs command was completed

getlO

The getlO method is used to get the inputs and outputs of the I/O module. If the option is set to COUNT_REQUEST_
LATCHED, the module will clear the latch after the 1/O is read to allow for faster subsequent latching.

Method
MseResults getIO
(
unsigned char* inputs,
unsigned char* outputs,
COUNT REQUEST OPTION option

Parameters
inputs A character where the input settings of the I/O module will be stored. Bit O will hold input
1 and bit 3 will hold input 4.
outputs A character where the output settings of the I/O module will be stored. Bit O will hold
output 1 and bit 3 will hold output 4.
option The type of position to return

Return value

MseResults A response code representing whether the getlO command was completed

146 Library software

C Functions
The 1/0 C functions can be found in the MseloModuleWrapper.h file.

MseloModuleCreate
Creates a MseloModule object and returns a pointer to it.

Function
MseIoModulePtr MseIoModuleCreate
(
)

Return value
The return value delivers a pointer to the MseloModule object that was created.

MseloModuleDelete
Deletes the MseloModule object that was passed in.

Function
void MseIoModuleDelete

(
MseIoModulePtr object

);
Parameters

object A pointer to the MseloModule object that was created by the MseloModuleCreate function

MseloModulelnitialize
Initializes the MseloModule object that was passed in.

Function
MSE RESPONSE CODE MseIoModuleInitialize
(

MseIoModulePtr object,

char* mseIpAddress,

bool useAsync

)
Parameters

object A pointer to the MseloModule object that was created by the MseloModuleCreate function
mselpAddress The IP address of the module to initialize
useAsync Whether to enable asynchronous communication from the module

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary

147

I/0 methods and functions

MseloModuleGetNumChannels
Gets the number of channels on the module.

Function
MSE RESPONSE CODE MseIoModuleGetNumChannels
(

MseIoModulePtr object,
unsigned shortx* numChannels
)
Parameters
object A pointer to the MseloModule object that was created by the MseloModuleCreate function
numChannels A pointer to the location where the number of channels will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

I/0 methods and functions

MseloModuleGetModuleErrorState

Gets the error state of the module. A value of True signifies that there is an error. Refer to System integrity on page 227 for
more information.

Function
MSE RESPONSE CODE MseIoModuleGetModuleErrorState
(

MseIoModulePtr object,
bool* errorState
)
Parameters
object A pointer to the MseloModule object that was created by the MseloModuleCreate function
errorState A pointer to the location where the error state will be copied to. A subsequent call to Mselo-

ModuleGetModuleErrors can be made to get the actual errors.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseloModuleGetModuleErrors
Gets the actual module errors. Refer to System integrity on page 227 for more information.

Function
MSE RESPONSE CODE MseIoModuleGetModuleErrors
(

MseIoModulePtr object,
long* errors,
double* ranges,
short size
);
Parameters
object A pointer to the MseloModule object that was created by the MseloModuleCreate function
errors A pointer to the location where the errors will be copied to. The errors is a single long that can
be masked with the INTEGRITY_ENUMS to determine which error has occurred.
ranges A pointer to the location where the ranges used to determine an error will be copied to. The
ranges is an array that must be large enough to hold NUM_INTEGRITY_RANGES.
size The size of the ranges array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

148 Library software

MseloModuleGetAdcValues
Gets the voltage and temperature values for the module.

Function
MSE RESPONSE CODE MseIoModuleGetAdcValues
(

MseIoModulePtr object,
short* adcVals,
short size
);
Parameters
object A pointer to the MseloModule object that was created by the MseloModuleCreate function
adcVals A pointer to the location where the voltage and temperature values will be stored. Must be
large enough to hold ADC_NUM_CHANNELS. The ADC_OPTIONS enumeration can be used to
index into the adcVals array.
size The size of the adcVals array

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseloModuleClearErrors
Clears the module and channel errors and warnings.

Function
MSE RESPONSE CODE MseIoModuleClearErrors

(
MseIoModulePtr object

)
Parameters
object A pointer to the MseloModule object that was created by the MseloModuleCreate function

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseloModuleSetOutputs
Sets the outputs of the module.

Function
MSE_RESPONSE_CODE MseIoModuleSetOutputs
(

MseIoModulePtr object,
char output
);
Parameters
object A pointer to the MseloModule object that was created by the MseloModuleCreate function
output The outputs to set masked into a single byte

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 149

I/0 methods and functions

I/0 methods and functions

MseloModuleSetOutput
Sets a single output of the module.

Function
MSE_RESPONSE_CODE MseIoModuleSetOutput
(

MseIoModulePtr object,

short pin,

short val

)
Parameters

object A pointer to the MseloModule object that was created by the MseloModuleCreate function
pin The output to set. Can be 1 - 4.
val The value to set the output to. Can be 0 or 1.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseloModuleGetOutputs
Gets the outputs of the module.

Function
MSE RESPONSE CODE MseIoModuleGetOutputs
(

MseIoModulePtr object,
char* outputs
)
Parameters
object A pointer to the MseloModule object that was created by the MseloModuleCreate function
outputs A pointer to the location where the outputs will be stored. Bit O will hold output 1 and bit 3 will

hold output 4.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseloModuleGetlnputs
Gets the inputs of the module.

Function
MSE_RESPONSE CODE MselIoModuleGetInputs
(

MseIoModulePtr object,
char* inputs
)
Parameters
object A pointer to the MseloModule object that was created by the MseloModuleCreate function
inputs A pointer to the location where the inputs will be stored. Bit 0 will hold input 1 and bit 3 will
hold input 4.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

150 Library software

MseloModuleGetlO
Gets the inputs and outputs of the module.

Function
MSE RESPONSE CODE MseIoModuleGetInputs
(

MseIoModulePtr object,
char* inputs,
char¥* outputs,

COUNT_REQUEST OPTION option

Parameters
object A pointer to the MseloModule object that was created by the MseloModuleCreate function
inputs A pointer to the location where the inputs will be stored. Bit 0 will hold input 1 and bit 3 will
hold input 4.
outputs A pointer to the location where the outputs will be stored. Bit 0 will hold output 1 and bit 3 will
hold output 4.
option Whether to get the latest or latched inputs.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseloModuleGetLatch
Gets whether the latch is active.

Function
MSE RESPONSE CODE MseIoModuleGetLatch
(

MseIoModulePtr object,
bool* isLatched
)
Parameters
object A pointer to the MseloModule object that was created by the MseloModuleCreate function
isLatched A pointer to the location where the latch state will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseloModuleClearLatch

Clears the latch. The user must make sure that the base module latches are cleared first or else the latch will immediately
trigger again.

Function
MSE RESPONSE CODE MselIoModuleClearLatch

(
MseIoModulePtr object

)

Parameters

object A pointer to the MseloModule object that was created by the MseloModuleCreate function

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 151

I/0 methods and functions

Pneumatic methods and functions

2.15 Pneumatic methods and functions

C++ methods and the C functions are separated into two sections for easier lookup.

C++ Methods

Constructor
MsePneumaticModule (void) ;

initializeModule

The initializeModule method is used to initialize a pneumatic module. It calls the MseModule::initializeModule() and then calls
setModulelnitialized (true) if the initialization passes. The number of channels is set to 1.

Method
MseResults initializeModule

(

const char* mselIpAddress,
bool useAsync
)
Parameters
mselpAddress The IP address of the module to initialize
useAsync True if the MSE should send asynchronous messages
Return value
MseResults A response code representing whether the method succeeded

getOutput

The getOutput method is used to get the output of the pneumatic module. If the option is set to COUNT_REQUEST_
LATCHED, the module will clear the latch after the output is read to allow for faster subsequent latching.

Method
MseResults getOutput
(
unsigned char* output,
COUNT_ REQUEST OPTION option
)7

Parameters
output A character where the output setting of the pneumatic module will be stored.
option The type of output to return.

Return value

MseResults A response code representing whether the getOutput command was completed

setOutput
The setOutput method is used to set the output of the pneumatic module to the desired value.

Method
MseResults setOutput
(

bool val
)
Parameters
val A boolean representing whether to set the output high or low
Return value
MseResults A response code representing whether the setOutput command was sent

152 Library software

C Functions
The pneumatic C functions can be found in the MsePneumaticModuleWrapper.h file.

MsePneumaticModuleCreate
Creates a MsePneumaticModule object and returns a pointer 1o it.

Function
MsePneumaticModulePtr MsePneumaticModuleCreate
(
)

Return value
The return value delivers a pointer to the MsePneumaticModule object that was created.

MsePneumaticModuleDelete
Deletes the MsePneumaticModule object that was passed in.

Function
void MsePneumaticModuleDelete

(

MsePneumaticModulePtr object

)

Parameters

object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function

MsePneumaticModulelnitialize
Initializes the MsePneumaticModule object that was passed in.

Function
MSE RESPONSE CODE MsePneumaticModuleInitialize
(

MsePneumaticModulePtr object,

char* mseIpAddress,
bool useAsync
)
Parameters
object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function
mselpAddress The IP address of the module to initialize
useAsync Whether to enable asynchronous communication from the module

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 153

Pneumatic methods and functions

Pneumatic methods and functions

MsePneumaticModuleGetNumChannels
Gets the number of channels on the module.

Function
MSE RESPONSE CODE MsePneumaticModuleGetNumChannels
(

MsePneumaticModulePtr object,

unsigned shortx* numChannels
)
Parameters
object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function
numChannels A pointer to the location where the number of channels will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MsePneumaticModuleGetModuleErrorState

Gets the error state of the module. A value of True signifies that there is an error. Refer to System integrity on page 227 for
more information.

Function
MSE RESPONSE CODE MsePneumaticModuleGetModuleErrorState
(

MsePneumaticModulePtr object,

bool* errorState
);
Parameters
object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function
errorState A pointer to the location where the error state will be copied to. A subsequent call to MsePneu-

maticModuleGetModuleErrors can be made to get the actual errors.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

154 Library software

MsePneumaticModuleGetModuleErrors
Gets the actual module errors. Refer to System integrity on page 227 for more information.

Function
MSE RESPONSE CODE MsePneumaticModuleGetModuleErrors
(

MsePneumaticModulePtr object,

long* errors,
double* ranges,
short size
);
Parameters
object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function
errors A pointer to the location where the errors will be copied to. The errors is a single long that can
be masked with the INTEGRITY_ENUMS to determine which error has occurred.
ranges A pointer to the location where the ranges used to determine an error will be copied to. The
ranges is an array that must be large enough to hold NUM_INTEGRITY_RANGES.
size The size of the ranges array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MsePneumaticModuleGetAdcValues
Gets the voltage and temperature values for the module.

Function
MSE RESPONSE CODE MsePneumaticModuleGetAdcValues
(

MsePneumaticModulePtr object,

short* adcVals,
short size
)
Parameters
object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function
adcVals A pointer to the location where the voltage and temperature values will be stored. Must be
large enough to hold ADC_NUM_CHANNELS. The ADC_OPTIONS enumeration can be used to
index into the adcVals array.
size The size of the adcVals array

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 155

Pneumatic methods and functions

Pneumatic methods and functions

MsePneumaticModuleClearErrors
Clears the module and channel errors and warnings.

Function
MSE RESPONSE CODE MsePneumaticModuleClearErrors
(

MsePneumaticModulePtr object
)

Parameters

object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MsePneumaticModuleSetOutput
Sets the output of the module.

Function
MSE RESPONSE CODE MsePneumaticModuleSetOutput
(

MsePneumaticModulePtr object,

short val
)
Parameters
object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function
val 1 to enable and 0 to disable

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MsePneumaticModuleGetOutput
Gets the output of the module.

Function
MSE RESPONSE CODE MsePneumaticModuleGetOutput
(
MsePneumaticModulePtr object,
char outputval,
COUNT_ REQUEST OPTION option

Parameters
object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function
outputVal A pointer to the location where the output will be stored
option Whether to get the latest or latched output

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

156 Library software

MsePneumaticModuleGetLatch
Gets whether the latch is active.

Function
MSE RESPONSE CODE MsePneumaticModuleGetLatch
(

MsePneumaticModulePtr object,

boolx* isLatched
) ;
Parameters
object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function
isLatched A pointer to the location where the latch state will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MsePneumaticModuleClearLatch

Clears the latch. The user must make sure that the base module latches are cleared first or else the latch will immediately
trigger again.

Function
MSE RESPONSE CODE MsePneumaticModuleClearLatch
(
MsePneumaticModulePtr object

)

Parameters

object A pointer to the MsePneumaticModule object that was created by the MsePneumaticModuleC-
reate function

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 157

Pneumatic methods and functions

LVDT methods and functions

2.16 LVDT methods and functions

C++ methods and the C functions are separated into two sections for easier lookup.
C++ Methods

Constructor
MseLvdtModule (void) ;

initializeModule

The initializeModule method is used to initialize an LVDT module. It calls the MseModule::initializeModule() and then calls
setModulelnitialized(true) if the initialization passes. The number of channels is set to 8.

Method
MseResults initializeModule

(

const char* mselIpAddress,
bool useAsync
)
Parameters
mselpAddress The IP address of the module to initialize
useAsync True if the MSE should send asynchronous messages
Return value
MseResults A response code representing whether the method succeeded.

getUom

The getUom method is used to get the unit of measurement for a specified channel. This method is not used. The setResolu-
tion method is used to determine the UOM.

Method
bool getUom

LVDT UOM* uom,
const unsigned short channel
)
Parameters
uom The location the units of measure for the specified channel will be stored
channel The channel to get indexed from 0
Return value
bool True if the method succeeds, false if the channel is out of range or the pointer is NULL.

158 Library software

setUom

The setUom method is used to set the unit of measurement for a specified channel. This method is not used. The setResolu-
tion method is used to determine the UOM.

Method
bool setUom

LVDT UOM uom,
const unsigned short channel
);
Parameters
uom The units of measure for the specified channel
channel The channel to set indexed from 0
Return value
bool True if the method succeeds, false if the channel is out of range.

getExcitationValues

The getExcitationValues method is used to get the excitation voltage and frequency used for the primary windings of the
LVDT sensors. The frequency is in kHz.

Method
MseResults getExcitationValues

(

double* voltage,
double* frequency
)
Parameters
voltage The location where the primary winding excitation voltage will be stored
frequency The location where the primary winding excitation frequency will be stored
Return value
MseResults A response code representing whether the method succeeded.

setExcitationVoltage
The setExcitationVoltage method is used to set the excitation voltage used for the primary windings of the LVDT sensors.

Method
MseResults setExcitationVoltage

(

const double* voltage

)

Parameters

voltage The desired primary winding excitation voltage. The voltage can be from LVDT_EXCITATION_
VOLTAGE_MIN_VPP to LVDT_EXCITATION_VOLTAGE_MAX_VPR

Return value

MseResults A response code representing whether the method succeeded.

HEIDENHAIN MSElibrary 159

LVDT methods and functions

LVDT methods and functions

setExcitationFrequency

The setExcitationFrequency method is used to set the excitation frequency used for the primary windings of the LVDT sen-
SOrs.

Method
MseResults setExcitationFrequency

(

const doublex* frequency
)

Parameters

frequency The desired primary winding excitation frequency in kHz. The frequency can be from LVDT_EX-
CITATION_FREQUENCY_MIN_KHZ to LVDT_EXCITATION_FREQUENCY_MAX_KHZ.

Return value
MseResults A response code representing whether the method succeeded.

getVoltage

The getVoltage method is used to get the LVDT sensor count and voltage value that is obtained from the ADC for the desired
channel. The count is useful because you can convert this to a position by multiplying it by the resolution of the sensor. The
voltage is an approximate value of the reading from the ADC and is informational only.

Method
MseResults getVoltage
(

unsigned short channel,
double* channelVoltage,
long* counts
)
Parameters
channel The channel to get the count and voltage of indexed from 0
channelVoltage The location where the LVDT sensor output voltage will be stored
counts The location where the LVDT sensor output counts will be stored
Return value
MseResults A response code representing whether the method succeeded.

getPositions

The getPositions method is used to get the position of a specific LVDT sensor in user units. The setResolution method must
be called before calling this method.

The resulting position is determined by first multiplying the count * resolution, then multiplying by the scaling, then adding
the device offset.

The scaling is set with the setScaling method of the base class, it defaults to 1.0.

The device offset is set with the setDeviceOffset method of the base class, it defaults to 0.0.

Method
MseResults getPositions
(
double* pos,
unsigned short numChannels,
COUNT REQUEST OPTION option

Parameters
pos The location where the position will be stored
numChannels The number of doubles in the pos array passed in
option Whether to read live or latched positions

Return value

MseResults A response code representing whether the method succeeded.

160 Library software

setChannelPresence

The setChannelPresence method is used to set whether an LVDT sensor is attached to a specific channel.

Method
MseResults setChannelPresence

(

unsigned char isConnected,
unsigned char channel
)
Parameters
isConnected Set to 1 if an LVDT is connected to the channel
channel The channel to set indexed from 0
Return value
MseResults A response code representing whether the method succeeded.

getChannelPresence

The getChannelPresence method is used to get whether an LVDT sensor is attached to a specific channel.

Method
MseResults getChannelPresence

(

unsigned char* isConnected,
unsigned char channel
)
Parameters
isConnected 1 signifies that an LVDT sensor is connected to the channel
channel The channel to get indexed from 0
Return value
MseResults A response code representing whether the method succeeded.

getResolution

The getResolution method is used to get the resolution used when converting an LVDT sensor’s count value to a position.

Method
MseResults getResolution

(

unsigned short channelNum,
double* resolution
)
Parameters
channelNum The channel to get the resolution of indexed from 0
resolution The location where the resolution will be stored
Return value
MseResults A response code representing whether the method suc-
ceeded.

HEIDENHAIN MSElibrary

161

LVDT methods and functions

LVDT methods and functions

setResolution
The setResolution method is used to set the resolution used when converting an LVDT sensor’s count value to a position.

Method
MseResults setResolution

(

unsigned short channelNum,
const double resolution
)
Parameters
channelNum The channel to set the resolution of indexed from 0
resolution The resolution to use when converting an LVDT sensor’s count value to a position
Return value
MseResults A response code representing whether the method succeeded.

setDiagnosticsEnabled

The setDiagnosticsEnabled method is used to set the sensor group to monitor based on the LVDT_UPDATE_CHOICES enu-
meration passed in.

Method
MseResults setDiagnosticsEnabled

(
const LVDT UPDATE CHOICES choice

);
Parameters

choice The desired sensor group to monitor

Return value

MseResults A response code representing whether the method succeeded.

getFpgaRevision

The getFpgaRevision method is used to get the revision of the FPGA code used in the module. The revision is in the form
0xMMmm, where MM is the major number and mm is the minor number (e.g. 0x0100 is V1.00).

Method
MseResults getFpgaRevision

(

unsigned shortx* revision
)
Parameters
revision A pointer to the location where the FPGA revision will be stored
Return value
MseResults A response code representing whether the method succeeded.

setOversampling

Sets the oversampling used when reading the LVDT sensor count from the ADC. A smaller value will take less time to obtain
a reading but will have more noise.

Method
MseResults setOversampling

(
const LVDT OVERSAMPLING CHOICES& choice

)

Parameters
choice One of the LVDT_OVERSAMPLING_CHOICES enumerations

Return value

MseResults A response code representing whether the method succeeded.

162 Library software

getSensorGain
The getSensorGain method is used to get the gain code used for a given sensor.

Method
MseResults getSensorGain

(

const unsigned short channelNum,
unsigned char* gainCode
) ;
Parameters
channelNum The channel number to get the gain code of indexed from 0
gainCode A pointer to the location where the gain code for the desired channel will be stored
Return value
MseResults A response code representing whether the method succeeded.

setSensorGain
The setSensorGain method is used to set the gain code used for a given sensor.

Method
MseResults setSensorGain

(

const unsigned short channelNum,
const unsigned char gainCode
)
Parameters
channelNum The channel number to get the gain code of indexed from 0
gainCode The gain code for the desired channel
Return value
MseResults A response code representing whether the method succeeded.

teachSensorGain

The teachSensorGain method is used to send a command to the module to adjust the gain until a value is found that allows

for the greatest range.

Method
MseResults teachSensorGain

(

const unsigned short channelNum
)
Parameters
channelNum The channel number to teach the gain code for indexed from 0
Return value
MseResults A response code representing whether the method succeeded.

HEIDENHAIN MSElibrary

163

LVDT methods and functions

LVDT methods and functions

getTeachSensorGainFinished

The getTeachSensorGainFinished method is used to get whether the teach has finished for a sensor’s position gain. The
teach is started when the teachSensorGain method is called.

Method
MseResults getTeachSensorGainFinished

(

const unsigned short channelNum,
unsigned shortx* gainCode
)
Parameters
channelNum The channel number to get the teach completion status for indexed from 0
gainCode The resulting gain code from the teach. This will be 0 if the teach has not been completed.
Return value
MseResults A response code representing whether the method succeeded.

C Functions
The LVDT module C functions can be found in the MselLvdtModuleWrapper.h file.

MseLvdtModuleCreate
Creates a MselLvdtModule object and returns a pointer to it.

Function
MseLvdtModulePtr MselLvdtModuleCreate
(
);

Return value
The return value delivers a pointer to the MselLvdtModule object that was created.

MseLvdtModuleDelete
Deletes the MselvdtModule object that was passed in.

Function
void MseLvdtModuleDelete

(
MseLvdtModulePtr object

)

Parameters

object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion

164 Library software

MseLvdtModulelnitialize
Initializes the MselL.vdtModule object that was passed in.

Function
MSE RESPONSE CODE MseLvdtModuleInitialize
(

MseLvdtModulePtr object,
char¥* mseIpAddress,
bool useAsync
);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
mselpAddress The IP address of the module to initialize
useAsync Whether to enable asynchronous communication from the module

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleGetNumChannels
Gets the number of channels on the module.

Function
MSE RESPONSE CODE MseLvdtModuleGetNumChannels
(

MseLvdtModulePtr object,
unsigned shortx* numChannels
);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
numChannels A pointer to the location where the number of channels will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleSetUom

Sets the unit of measurement to use for the specified channel when requesting position. This function is not used. The
MselvdtModuleSetResolution function is used to determine the UOM.

Function
MSE RESPONSE CODE MseLvdtModuleSetUom
(

MseLvdtModulePtr object,
LVDT UOM uom,
short channel
);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
uom The unit of measurement to use when requesting position for the specified channel
channel The channel to set the unit of measurement of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 165

LVDT methods and functions

LVDT methods and functions

MseLvdtModuleGetUom

Gets the unit of measurement used for the specified channel when requesting position. This function is not used. The
MselLvdtModuleSetResolution function is used to determine the UOM.

Function
MSE_RESPONSE_CODE MseLvdtModuleGetUom
(

MseLvdtModulePtr object,
LVDT UOM* uom,
short channel
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
uom A pointer to the location where the unit of measurement will be stored
channel The channel to get the unit of measurement of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleSetResolution
Sets the resolution to use for the specified channel when requesting position.

Function
MSE RESPONSE CODE MseLvdtModuleSetResolution
(

MseLvdtModulePtr object,
const double resolution,
short channel
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
resolution The resolution to use when requesting position for the specified channel
channel The channel to set the resolution of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleGetResolution
Gets the resolution used for the specified channel when requesting position.

Function
MSE_RESPONSE CODE MseLvdtModuleGetResolution
(

MseLvdtModulePtr object,
double* resolution,
short channel
);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
resolution A pointer to the location where the resolution will be stored
channel The channel to get the resolution of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

166 Library software

MseLvdtModuleSetScaling

Sets the device scaling for a specific channel to the desired multiplier. This value will be applied to the position when
MseLvdtGetPositions is called. This differs from the error compensation since the scaling can be used for gear ratios and
other factors.

Function
MSE RESPONSE CODE MseLvdtModuleSetScaling
(

MseLvdtModulePtr object,
const double val,
const unsigned short channel
);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
val The scaling to use for the channel
channel The channel to set indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleGetScaling

Gets the device scaling for a specific channel. This value will be applied to the position when MselLvdtGetPositions is called.
This differs from the error compensation since the scaling can be used for gear ratios and other factors.

Function
MSE RESPONSE CODE MseLvdtModuleGetScaling
(

MseLvdtModulePtr object,
double* val,
const unsigned short channel
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
val A pointer to the location where the scaling is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleGetLatch
Gets whether the latch is active.

Function
MSE RESPONSE CODE MseLvdtModuleGetLatch
(

MseLvdtModulePtr object,
boolx* isLatched
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
isLatched A pointer to the location where the latch state will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 167

LVDT methods and functions

LVDT methods and functions

MseLvdtModuleClearLatch

Clears the latch. The user must make sure that the base module latch is cleared first or the latch will immediately trigger
again.

Function
MSE RESPONSE CODE MseLvdtModuleClearLatch

(
MseLvdtModulePtr object

);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleGetModuleErrorState

Gets the error state of the module. A value of True signifies that there is an error. Refer to System integrity on page 227 for
more information.

Function
MSE RESPONSE CODE MseLvdtModuleGetModuleErrorState
(

MseLvdtModulePtr object,
bool* errorState
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
errorState A pointer to the location where the error state will be stored. A subsequent call to MselLvdt-

ModuleGetModuleErrors can be made to get the actual errors.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleGetModuleErrors
Gets the errors specific to the module. Refer to System integrity on page 227 for more information.

Function
MSE RESPONSE CODE MseLvdtModuleGetModuleErrors
(

MseLvdtModulePtr object,
long* errors,
double* ranges,
short size
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
errors A pointer to the location where the errors state will stored. The errors is a single long that can
be masked with the INTEGRITY_ENUMS to determine which error has occurred.
ranges A pointer to the location where the ranges used to determine an error will be stored. The
ranges is an array that must be large enough to hold NUM_INTEGRITY_RANGES.
size The size of the ranges array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

168 Library software

MseLvdtModuleEnableDiags
Sets the diagnostic mode for the channels and module. Refer to Diagnostic modes on page 231 for more information.

Function
MSE RESPONSE CODE MseLvdtModuleEnableDiags
(

MseLvdtModulePtr object,
DIAG MODE_OPTIONS choice
) ;
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
choice The desired level of diagnostics

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleGetAdcValues
Gets the voltage and temperature values for the module.

Function
MSE RESPONSE CODE MseLvdtModuleGetAdcValues
(

MseLvdtModulePtr object,
short* adcVals,
short size
);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
adcVals A pointer to the location where the voltage and temperature values will be stored. Must be
large enough to hold ADC_NUM_CHANNELS. The ADC_OPTIONS enumeration can be used
to index into the adcVals array.
size The size of the adcVals array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleClearErrors
Clears the module errors and warnings.

Function
MSE RESPONSE CODE MseLvdtModuleClearErrors
(
MseLvdtModulePtr object
)

Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 169

LVDT methods and functions

LVDT methods and functions

MseLvdtModuleGetPositions

Gets the positions of all of the LVDT sensors in the module.

The resulting position is determined by first multiplying the count * resolution, then multiplying by the scaling, then adding
the device offset.

The scaling is set with the MselLvdtModuleSetScaling function, it defaults to 1.0.

The device offset is set with the MselLvdtModuleSetDeviceOffset function, it defaults to 0.0.

Function
MSE RESPONSE CODE MseLvdtModuleGetPositions
(

MseLvdtModulePtr object,
double* pos,
short numChannels,

COUNT_REQUEST OPTION option

Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
pos A pointer to the location where the LVDT positions will be copied to. Must be large enough to
hold NUM_LVDT_CHANNELS.
numChannels The size of the pos array
option Whether to get the latest or the latched positions

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleSetDeviceOffset

The MselvdtModuleSetDeviceOffset method is used to set the offset that will be applied to the position calculated from the
counts in the MselLvdtModuleGetPositions function.

Function
MSE RESPONSE CODE MseLvdtModuleSetDeviceOffset
(

MseLvdtModulePtr object,
unsigned short channel,
double offset
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
channel The channel of the encoder to apply the offset to
offset The offset to apply

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

170 Library software

MseLvdtModuleGetDeviceOffset

The MselvdtModuleGetDeviceOffset method is used to return the offset that will be applied to the position calculated from
the counts in the MselLvdtModuleGetPositions function.

Function
MSE RESPONSE CODE MseLvdtModuleGetDeviceOffset
(

MseLvdtModulePtr object,
unsigned short channel
double* offset
);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
channel The channel of the encoder that the offset will be applied to
offset A pointer to the location where the offset will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleGetExcitationValues
Gets the primary windings excitation voltage and frequency. The frequency is in kHz.

Function
MSE RESPONSE CODE MseLvdtModuleGetExcitationValues
(

MseLvdtModulePtr object,

double* voltage,

double* frequency

)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion

voltage A pointer to the location where the primary winding excitation voltage will be stored
frequency A pointer to the location where the primary winding excitation frequency will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 171

LVDT methods and functions

LVDT methods and functions

MseLvdtModuleSetExcitationVoltage

Sets the primary windings excitation voltage. The voltage is used for all sensors connected to the module. The data sheet for
the sensor should be used to determine the correct voltage.

Function
MSE RESPONSE CODE MseLvdtModuleSetExcitationVoltage
(

MseLvdtModulePtr object,
const double voltage
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
voltage The desired primary winding excitation voltage. The voltage can be from LVDT_EXCITATION_

VOLTAGE_MIN_VPP to LVDT_EXCITATION_VOLTAGE_MAX_VPP

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleSetExcitationFrequency

Sets the primary windings excitation frequency. The frequency is used for all sensors connected to the module. The data
sheet for the sensor should be used to determine the correct frequency.

Function
MSE RESPONSE CODE MseLvdtModuleSetExcitationFrequency
(

MseLvdtModulePtr object,
const double frequency
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
frequency The desired primary winding excitation frequency in kHz. The frequency can be from LVDT_

EXCITATION_FREQUENCY_MIN_KHZ to LVDT_EXCITATION_FREQUENCY_MAX_KHZ.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleGetVoltage

Gets the LVDT sensor count and voltage value that is obtained from the ADC for the desired channel. The count is useful be-
cause you can convert this to a position by multiplying it by the resolution of the sensor. The voltage is an approximate value
of the reading from the ADC and is informational only.

Function
MSE_RESPONSE CODE MseLvdtModuleGetVoltage
(

MseLvdtModulePtr object,

unsigned short channel,

double* channelVoltage,

long* counts

)
Parameters
object A pointer to the MselLvdtModule object that was created by the MseLvdtModuleCreate func-
tion

channel The channel to get the sensor count and voltage indexed from 0
channelVoltage The location where the LVDT sensor output voltage will be stored
counts The location where the LVDT sensor output counts will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

172 Library software

MseLvdtModuleSetChannelPresence
Sets whether the specified channel is populated.

Function
MSE RESPONSE CODE MseLvdtModuleSetChannelPresence
(

MseLvdtModulePtr object,
unsigned char isConnected,
unsigned char channel
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
isConnected A value of 1 if an LVDT is connected to the channel
channel The channel to set indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtModuleGetChannelPresence
The MselvdtModuleGetChannelPresence method is used to get whether an LVDT sensor is attached to a specific channel.

Method
MSE RESPONSE CODE MseLvdtModuleGetChannelPresence
(

MseLvdtModulePtr object,
unsigned char* isConnected,
unsigned char channel
)
Parameters
isConnected 1 signifies that an LVDT sensor is connected to the channel
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MselLvdtSetDiagnosticsEnabled

The MselvdtSetDiagnosticsEnabled method is used to set the sensor group to monitor based on the LVDT_UPDATE_
CHOICES enumeration passed in.

Function
MSE_RESPONSE CODE MseLvdtSetDiagnosticsEnabled
(
MseLvdtModulePtr object
const LVDT UPDATE CHOICES choice
)i

Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
choice The desired sensor group to monitor

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 173

LVDT methods and functions

LVDT methods and functions

MseLvdtGetSensorGain
The MselvdtGetSensorGain method is used to get the gain code used for a given sensor.

Function
MSE RESPONSE CODE MseLvdtGetSensorGain
(

MseLvdtModulePtr object,
const unsigned short channelNum,
unsigned char* gainCode
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
channelNum The channel number to get the gain code of indexed from 0
gainCode A pointer to the location where the gain code for the desired channel will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtSetSensorGain
The MselvdtSetSensorGain method is used to set the gain code used for a given sensor.

Function
MSE RESPONSE CODE MseLvdtSetSensorGain
(

MseLvdtModulePtr object,
const unsigned short channelNum,
const unsigned char gainCode
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
channelNum The channel number to get the gain code of indexed from 0
gainCode The gain code for the desired channel

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MselLvdtTeachSensorGain

The MselvdtTeachSensorGain method is used to send a command to the module to adjust the gain until a value is found that
allows for the greatest range.

Function
MSE RESPONSE CODE MseLvdtTeachSensorGain
(

MseLvdtModulePtr object,
const unsigned short channelNum
);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
channelNum The channel number to teach the gain code of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

174 Library software

MseLvdtGetTeachSensorGainFinished

The MselvdtGetTeachSensorGainFinished method is used to get whether the teach has finished for the MselvdtTeachSens-
orGain function.

Function
MSE RESPONSE CODE MseLvdtGetTeachSensorGainFinished
(

MseLvdtModulePtr object,
const unsigned short channelNum,
unsigned shortx* gainCode
);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
channelNum The channel number to get the teach completion status of indexed from 0
gainCode A pointer to the location where the resulting gain code from the teach will be stored. This will

be 0 if the teach has not been completed.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseLvdtGetFpgaRevision

The MselvdtGetFpgaRevision method is used to get the revision of the FPGA code used in the module. The revision is in the
form OxMMmm, where MM is the major number and mm is the minor number (e.g. 0x0100 is V1.00).

Function
MSE RESPONSE CODE MseLvdtGetFpgaRevision
(

MseLvdtModulePtr object,
unsigned short* revision
);
Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
revision A pointer to the location where the FPGA revision will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.
add:

MseLvdtModuleSetOversampling

Sets the oversampling used when reading the LVDT sensor count from the ADC. A smaller value will take less time to obtain
a reading but will have more noise.

Function
MSE RESPONSE CODE MseLvdtModuleSetOversampling
(
MseLvdtModulePtr object,
const LVDT OVERSAMPLING CHOICES choice
)

Parameters
object A pointer to the MselLvdtModule object that was created by the MselLvdtModuleCreate func-
tion
choice One of the LVDT_OVERSAMPLING_CHOICES enumerations

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 175

LVDT methods and functions

Analog methods and functions

2.17 Analog methods and functions

C++ methods and the C functions are separated into two sections for easier lookup.
C++ Methods

Constructor
MseAnalogModule (void) ;

initializeModule

The initializeModule method is used to initialize an analog module. It calls the MseModule::initializeModule() and then calls
setModulelnitialized(true) if the initialization passes. The number of channels is set to NUM_MSE1000_ANALOG_CHANNELS.

Method
MseResults initializeModule

(

const char* mselIpAddress,
bool useAsync
)
Parameters
mselpAddress The IP address of the module to initialize
useAsync True if the MSE should send asynchronous messages
Return value
MseResults A response code representing whether the method succeeded.

getVoltage
The getVoltage method is used to get the analog voltage for all channels. The voltage is a value between -10 and 10 V.

Method
MseResults getVoltage
(
double* values,
unsigned short numValues,
COUNT REQUEST OPTION option

Parameters
values A pointer to the location where the analog voltage values will be stored. This must be large
enough to hold NUM_MSE1000_ANALOG_VALUES_PER_CHANNEL values.
numValues The number of doubles passed in for the values array
option Whether to read live or latched positions
Return value
MseResults A response code representing whether the method succeeded.

176 Library software

getCurrent
The getCurrent method is used to get the analog current for all channels. The current is a value between 4 and 20 mA.

Method
MseResults getCurrent
(
double* values,
unsigned short numValues,
COUNT_ REQUEST OPTION option

Parameters
values A pointer to the location where the analog current values will be stored. This must be large
enough to hold NUM_MSE1000_ANALOG_VALUES_PER_CHANNEL values.
numValues The number of doubles passed in for the values array
option Whether to read live or latched positions
Return value
MseResults A response code representing whether the method succeeded.

getValues

The getValues method is used to get the analog voltage and current for all channels. The voltage is a value between -10 and

10 V. The current is a value between 4 and 20 mA.

Method
MseResults getValues
(
double* values,
unsigned short numValues,
COUNT_REQUEST_OPTION option

Parameters

values A pointer to the location where the analog voltage and current values will be stored. This
must be large enough to hold (NUM_MSE1000_ANALOG_CHANNELS * NUM_MSE1000_
ANALOG_VALUES_PER_CHANNEL) values. The values returned are in the following order:
values|0] = voltage channel 1, values[1] = current channel 1, values[2] = voltage channel 2,
values(3] = current channel 2.

numValues The number of doubles passed in for the values array

option Whether to read live or latched positions

Return value

MseResults A response code representing whether the method succeeded.

HEIDENHAIN MSElibrary

177

Analog methods and functions

Analog methods and functions

getScaledValues

The getScaledValues method is used to get the analog voltage and current for all channels. The values for each channel are
scaled with the resolution and the offset is subtracted, then the value is multiplied by the scaling, then the device offset is
added.

The resolution is set with the setResolution method.

The offset is set with the setOffset method.

The scaling is set with the setScaling method, it defaults to 1.0.

The device offset is set with the setDeviceOffset method in the base class, it defaults to 0.0..

The initial voltage is a value between -10 and 10 V.

The initial current is a value between 4 and 20 mA.

Method
MseResults getScaledValues
(
double* values,
unsigned short numValues,
COUNT REQUEST OPTION option

Parameters

values A pointer to the location where the analog voltage and current values will be stored. This
must be large enough to hold (NUM_MSE1000_ANALOG_CHANNELS * NUM_MSE1000_
ANALOG_VALUES_PER_CHANNEL) values. The values returned are in the following order:
values[0] = voltage channel 1, values[1] = current channel 1, values[2] = voltage channel 2,
values[3] = current channel 2.

numValues The number of doubles passed in for the values array

option Whether to read live or latched positions

Return value

MseResults A response code representing whether the method succeeded.

getDiagVoltages

The getDiagVoltages method is used to get the supply and output voltages of the analog module ADC. Refer to the ANA-
LOG_DIAG_VOLTAGES_ENUM enumeration on page 50 for information on the data returned.

Method
MseResults getDiagVoltages
(

double* values,
unsigned short numValues
)
Parameters
values A pointer to the location where the supply and output voltages will be stored. This array must
be large enough to hold (NUM_ANALOG_DIAG_VOLTAGES * NUM_MSE1000_ANALOG_
CHANNELS).
numValues The number of doubles passed in for the values array
Return value
MseResults A response code representing whether the method succeeded.

178 Library software

setNumSamples

The setNumSamples method is used to set the number of samples to use for the averaging function in the analog module.

Defaults to MAX_NUM_ANALOG_AVG_SAMPLES.

Method
MseResults setNumSamples

(

const unsigned char channelNum,
const unsigned char numSamples
);
Parameters
channelNum The channel number to set the number of samples of indexed from 0
numSamples The number of samples to use when determining the running average. Can be from 0 to

MAX_NUM_ANALOG_AVG_SAMPLES.

Return value

MseResults A response code representing whether the method succeeded.

setResolution
Sets the resolution to use when converting from the device's signal value in mA orV to a value in user units. Defaults to 1.

Method
MseResults setResolution

(

const unsigned short channelNum,
const double resolution
)
Parameters
channelNum The channel number to set the resolution of indexed from 0
resolution The resolution to use
Return value
MseResults A response code representing whether the method succeeded.

getResolution
Gets the resolution used when converting from the device's signal value in mA orV to a value in user units.

Method
MseResults getResolution

(

const unsigned short channelNum,
const double* resolution
)
Parameters
channelNum The channel number to get the resolution of indexed from 0
resolution The resolution used
Return value
MseResults A response code representing whether the method suc-
ceeded.

HEIDENHAIN MSElibrary 179

Analog methods and functions

Analog methods and functions

setOffset

Sets the offset to use after converting from the device's signal value in mA or V to a value in user units. Defaults to 0.

Method
MseResults setOffset
(

const unsigned short channelNum,
const double offset
);
Parameters
channelNum The channel number to set the offset of indexed from 0
offset The offset to use
Return value
MseResults A response code representing whether the method succeeded.

getOffset
Gets the offset to use after converting from the device's signal value in mA orV to a value in user units.

Method
MseResults getOffset
(

const unsigned short channelNum,
double* offset
);
Parameters
channelNum The channel number to get the offset of indexed from 0
offset The offset used
Return value
MseResults A response code representing whether the method succeeded.

computeResolutionAndOffset

Computes and saves the resolution and offset to use for converting from the device’s signal value in mA orV to a value in
user units. The computed resolution and offset will be used when the user calls the getScaledValues method.

Method
MseResults computeResolutionAndOffset
(

const unsigned short channelNum,
double* resolution,
double* offset,
const double instrumentationMax,
const double instrumentationMin,
const double signalMax,
const double signalMin
)
Parameters
channelNum The channel number to compute the reslution and offset for indexed from 0
resolution A pointer to the location where the computed resolution will be saved
offset A pointer to the location where the computed offset will be saved

instrumentationMax The calibration max value of the device in user units
instrumentationMin The calibration min value of the device in user units
signalMax The calibration max value of the device in raw voltage or mA

signalMin The calibration min value of the device in raw voltage or mA

Return value

MseResults A response code representing whether the method succeeded.

180

Library software

setScaling

Sets the generic device scaling to the desired multiplier. This value will be applied to the position when getScaledValues is
called after the resolution and offset are applied.

Method
bool setScaling
(

const unsigned short channelNum,
const double value
);
Parameters
channelNum The channel number to set indexed from 0
value The scaling to use

Return value
The return value delivers False if the channel is out of range.

getScaling

Gets the generic device scaling of the desired channel. This value will be applied to the position when getScaledValues is
called after the resolution and offset are applied.

Method
MseResults getScaling
(

const unsigned short channelNum,
double* value
)
Parameters
channelNum The channel number to get indexed from 0
value The scaling used

Return value
The return value delivers False if the channel is out of range or if the pointer is NULL.

HEIDENHAIN MSElibrary 181

Analog methods and functions

Analog methods and functions

C Functions
The analog module C functions can be found in the MseAnalogModuleWrapper.h file.

MseAnalogModuleCreate
Creates a MseAnalogModule object and returns a pointer to it.

Function
MseAnalogModulePtr MseAnalogModuleCreate
(
)

Return value
The return value delivers a pointer to the MseAnalogModule object that was created.

MseAnalogModuleDelete
Deletes the MseAnalogModule object that was passed in.

Function
void MseAnalogModuleDelete
(

MseAnalogModulePtr object
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function

MseAnalogModulelnitialize
Initializes the MseAnalogModule object that was passed in.

Function
MSE RESPONSE CODE MseAnalogModulelInitialize
(

MseAnalogModulePtr object,
char* mseIpAddress,
bool useAsync
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
mselpAddress The IP address of the module to initialize
useAsync Whether to enable asynchronous communication from the module

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

182

Library software

MseAnalogModuleGetNumChannels
Gets the number of channels on the module.

Function
MSE RESPONSE CODE MseAnalogModuleGetNumChannels
(

MseAnalogModulePtr object,
unsigned shortx* numChannels
) ;
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
numChannels A pointer to the location where the number of channels will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleGetModuleErrorState

Gets the error state of the module. A value of True signifies that there is an error. Refer to System integrity on page 227 for
more information.

Function
MSE RESPONSE CODE MseAnalogModuleGetModuleErrorState
(

MseAnalogModulePtr object,
bool* errorState
);
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
errorState A pointer to the location where the error state will be stored. A subsequent call to Mse-

AnalogModuleGetModuleErrors can be made to get the actual errors.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleGetModuleErrors
Gets the errors specific to the module. Refer to System integrity on page 227 for more information.

Function
MSE RESPONSE CODE MseAnalogModuleGetModuleErrors
(

MseAnalogModulePtr object,
long* errors,
double* ranges,
short size
);
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
errors A pointer to the location where the errors state will stored. The errors is a single long that can
be masked with the INTEGRITY_ENUMS to determine which error has occurred.
ranges A pointer to the location where the ranges used to determine an error will be stored. The
ranges is an array that must be large enough to hold NUM_INTEGRITY_RANGES.
size The size of the ranges array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 183

Analog methods and functions

Analog methods and functions

MseAnalogModuleGetAdcValues
Gets the voltage and temperature values for the module.

Function
MSE RESPONSE CODE MseAnalogModuleGetAdcValues
(

MseAnalogModulePtr object,
short* adcVals,
short size
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
adcVals A pointer to the location where the voltage and temperature values will be stored. Must be
large enough to hold ADC_NUM_CHANNELS. The ADC_OPTIONS enumeration can be used
to index into the adcVals array.
size The size of the adcVals array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleClearErrors
Clears the module errors and warnings.

Function
MSE RESPONSE CODE MseAnalogModuleClearErrors
(

MseAnalogModulePtr object
);
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleGetLatch
Gets whether the latch is active.

Function
MSE RESPONSE CODE MseAnalogModuleGetLatch
(

MseAnalogModulePtr object,
bool* isLatched,
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
isLatched A pointer to the location where the latch state will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

184 Library software

MseAnalogModuleClearLatch

Clears the latch. The user must make sure that the base module latch is cleared first or the latch will immediately trigger
again.

Function
MSE RESPONSE CODE MseAnalogModuleClearLatch
(

MseAnalogModulePtr object
) ;
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleGetVoltage
Gets the analog voltage for all channels. The voltage is a value between -10 and 10V.

Function
MSE RESPONSE CODE MseAnalogModuleGetVoltage
(

MseAnalogModulePtr object,
double* values,
unsigned short numValues,

COUNT REQUEST OPTION option

Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
values A pointer to the location where the voltage values will be stored
numValues The size of the values array. This must be large enough to hold NUM_MSE1000_ANALOG_
CHANNELS.
option Whether to get the latest or the latched positions

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleGetCurrent
Gets the analog current for all channels. The current is a value between 4 and 20mA.

Function
MSE RESPONSE CODE MseAnalogModuleGetCurrent
(

MseAnalogModulePtr object,
double* values,
unsigned short numValues,

COUNT_ REQUEST OPTION option

Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
values A pointer to the location where the current values will be stored
numValues The size of the values array. This must be large enough to hold NUM_MSE1000_ANALOG_
CHANNELS.
option Whether to get the latest or the latched positions

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 185

Analog methods and functions

Analog methods and functions

MseAnalogModuleGetValues

Gets the analog voltage and current for all channels. The voltage is a value between -10 and 10V. The current is a value be-
tween 4 and 20mA.

Function
MSE RESPONSE CODE MseAnalogModuleGetValues
(

MseAnalogModulePtr object,
double* values,
unsigned short numValues,

COUNT_REQUEST OPTION option

Parameters

object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function

values A pointer to the location where the analog voltage and current values will be stored. This
must be large enough to hold (NUM_MSE1000_ANALOG_CHANNELS * NUM_MSE1000_
ANALOG_VALUES_PER_CHANNEL) values. The values returned are in the following order:
values|[0] = voltage channel 1, values[1] = current channel 1, values[2] = voltage channel 2,
values|[3] = current channel 2.

numValues The size of the values array. This must be large enough to hold NUM_MSE1000_ANALOG_
CHANNELS.

option Whether to get the latest or the latched positions

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleGetScaledValues

Gets the analog voltage and current for all channels.

The values for each channel are scaled with the resolution and the offset is subtracted, then the value is multiplied by the
scaling, then the device offset is added.

The resolution is set with the MseAnalogModuleSetResolution function.

The offset is set with the MseAnalogModuleSetOffset function.

The scaling is set with the MseAnalogModuleSetScaling function, it defaults to 1.0.

The device offset is set with the MseAnalogModuleSetDeviceOffset function, it defaults to 0.0..

The initial voltage is a value between -10 and 10V.

The initial current is a value between 4 and 20mA.

Function
MSE RESPONSE CODE MseAnalogModuleGetScaledValues
(

MseAnalogModulePtr object,
double* values,
unsigned short numValues,

COUNT REQUEST OPTION option

Parameters

object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function

values A pointer to the location where the analog voltage and current values will be stored. This
must be large enough to hold (NUM_MSE1000_ANALOG_CHANNELS * NUM_MSE1000_
ANALOG_VALUES_PER_CHANNEL) values. The values returned are in the following order:
values|0] = voltage channel 1, values[1] = current channel 1, values[2] = voltage channel 2,
values(3] = current channel 2.

numValues The size of the values array. This must be large enough to hold NUM_MSE1000_ANALOG_
CHANNELS.

option Whether to get the latest or the latched positions

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

186 Library software

MseAnalogModuleSetDeviceOffset

The MseAnalogModuleSetDeviceOffset method is used to set the offset that will be applied to the position calculated from
the counts in the MseAnalogModuleGetScaledValues function.

Function
MSE RESPONSE CODE MseAnalogModuleSetDeviceOffset
(

MseAnalogModulePtr object,
unsigned short channel,
double offset
);
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
channel The channel of the encoder to apply the offset to
offset The offset to apply

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleGetDeviceOffset

The MseAnalogModuleGetDeviceOffset method is used to return the offset that will be applied to the position calculated
from the counts in the MseAnalogModuleGetScaledValues function.

Function
MSE RESPONSE CODE MseAnalogModuleGetDeviceOffset
(

MseAnalogModulePtr object,
unsigned short channel
double* offset
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
channel The channel of the encoder that the offset will be applied to
offset A pointer to the location where the offset will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleSetScaling

Sets the generic device scaling to the desired multiplier. This value will be applied to the position when MseAnalogMod-
uleGetScaledValues is called after the resolution and offset are applied.

Function
MSE_RESPONSE_CODE MseAnalogModuleSetScaling
(

MseAnalogModulePtr object,
const unsigned short channelNum,
const double value
)
Parameters
object A pointer to the MselLvdtModule object that was created by the MseAnalogModuleCreate func-
tion
channelNum The channel to set indexed from 0
val The scaling to use for the channel

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 187

Analog methods and functions

Analog methods and functions

MseAnalogModuleGetScaling

Gets the generic device scaling of the desired channel. This value will be applied to the position when MseAnalogMod-
uleGetScaledValues is called after the resolution and offset are applied.

Function
MSE RESPONSE CODE MseAnalogModuleGetScaling
(

MseAnalogModulePtr object,
const unsigned short channelNum,
double* value
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
channelNum The channel to get indexed from 0
val A pointer to the location where the scaling is stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleGetDiagVoltages

Gets the supply and output voltages of the analog module ADC. Refer to the ANALOG_DIAG_VOLTAGES_ENUM enumera-
tion on page 50 for information on the data returned.

Function
MSE RESPONSE CODE MseAnalogModuleGetDiagVoltages
(

MseAnalogModulePtr object,
double* values,
unsigned short numValues
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
values A pointer to the location where the supply and output voltages will be stored. This array must
be large enough to hold (NUM_ANALOG_DIAG_VOLTAGES * NUM_MSE1000_ANALOG_
CHANNELS).
numValues The number of doubles passed in for the values array

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleSetNumSamples

Sets the number of samples to use for the averaging function in the analog module. Defaults to MAX_NUM_ANALOG_AVG_
SAMPLES.

Function
MSE RESPONSE_CODE MseAnalogModuleSetNumSamples
(

MseAnalogModulePtr object,
const unsigned char channelNum,
const unsigned char numSamples
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
channelNum The channel number to set the number of samples of indexed from 0
numSamples The number of samples to use when determining the running average. Can be from 0 to

MAX_NUM_ANALOG_AVG_SAMPLES.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

188 Library software

MseAnalogModuleSetResolution
Sets the resolution to use when converting from the device's signal value in mA orV to a value in user units. Defaults to 1.

Function
MSE RESPONSE CODE MseAnalogModuleSetResolution
(

MseAnalogModulePtr object,
const unsigned short channelNum,
const double resolution
);
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
channelNum The channel number to set the resolution of indexed from 0
resolution The resolution to use

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleGetResolution
Gets the resolution used when converting from the device's signal value in mA orV to a value in user units.

Function
MSE RESPONSE CODE MseAnalogModuleGetResolution
(

MseAnalogModulePtr object,
const unsigned short channelNum,
const double* resolution
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
channelNum The channel number to get the resolution of indexed from 0
resolution A pointer to the location where the resolution will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleSetOffset
Gets the resolution used when converting from the device's signal value in mA orV to a value in user units.

Function
MSE RESPONSE CODE MseAnalogModuleSetOffset
(

MseAnalogModulePtr object,
const unsigned short channelNum,
const double offset
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
channelNum The channel number to set the offset of indexed from O
offset The offset to use

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 189

Analog methods and functions

Analog methods and functions

MseAnalogModuleGetOffset

Gets the offset to use after converting from the device's signal value in mA orV to a value in user units.

Function

MSE RESPONSE CODE MseAnalogModuleGetOffset

(

MseAnalogModulePtr object,
const unsigned short channelNum,
const doublex* offset
)
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
channelNum The channel number to get the offset of indexed from 0
offset A pointer to the location where the offset will be stored

Return value

The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseAnalogModuleComputeResolutionAndOffset

Computes and saves the resolution and offset to use for converting from the device’s signal value in mA orV to a value in
user units. The computed resolution and offset will be used when the user calls the getScaledValues method.

Function

MSE RESPONSE CODE MseAnalogModuleComputeResolutionAndOffset

(
MseAnalogModulePtr
const unsigned short
double*
double*
const double
const double

object,

channelNum,
resolution,

offset,
instrumentationMax,
instrumentationMin,

const double signalMax,
const double signalMin
)i
Parameters
object A pointer to the MseAnalogModule object that was created by the MseAnalogModuleCreate
function
channelNum The channel number to compute the resolution and offset for indexed from 0
resolution A pointer to the location where the computed resolution will be saved
offset A pointer to the location where the computed offset will be saved

instrumentationMax The calibration max value of the device in user units

instrumentationMin The calibration min value of the device in user units

signalMax The calibration max value of the device in raw voltage or mA

signalMin The calibration min value of the device in raw voltage or mA

Return value

The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

190

Library software

2.18 TTL methods and functions

C++ methods and the C functions are separated into two sections for easier lookup.

C++ Methods

Constructor
MseTt1lModule (void) ;

initializeModule

The initializeModule method is used to initialize a TTL module. It calls the MseModule::initializeModule() and then calls
setModulelnitialized(true) if the initialization passes. The number of channels is set based on the type of TTL module.

Method
MseResults initializeModule

(

const char* mselIpAddress,
bool useAsync
)
Parameters
mselpAddress The IP address of the module to initialize
useAsync True if the MSE should send asynchronous messages
Return value
MseResults A response code representing whether the method succeeded

getPositions

The getPositions method is used to get the position of a specific TTL encoder in user units. The setEncoderType, setUom,
and setLineCount or setSignalPeriod methods must be called before calling this method.

The resulting position is determined by first multiplying the count by the error compensation, then multiplying by the scaling,
then computing the position based on the resolution, then converting to the correct UOM, then adding the device offset, and
finally formatting the rotary position if necessary.

The error compensation is set with the setErrorCompensation method of the base class, it defaults to 1.0.

The scaling is set with the setScaling method of the base class, it defaults to 1.0.

The resolution is calculated based on the setLineCount or setSignalPeriod values.

The UOM is set with setUom, it defaults to UOM_RAW_COUNTS and getPositions will not do any position calculations until
set.

The device offset is set with the setDeviceOffset method of the base class, it defaults to 0.0.

The rotary format can be changed with the setRotaryFormat method, it defaults to ROTARY_FORMAT_360.

Method
MseResults getPositions
(
double* pos,
unsigned short numChannels,
COUNT REQUEST OPTION option

Parameters
pos A pointer to the location where the position will be stored
numChannels The number of doubles in the pos array passed in
option Whether to read live or latched positions

Return value

MseResults A response code representing whether the method succeeded.

HEIDENHAIN MSElibrary 191

TTL methods and functions

TTL methods and functions

getCounts
Gets the counts of all the attached encoders.

Method
MSELIB EXPORT MseResults getCounts
(
unsigned long* counts,
unsigned short numChannels,
COUNT REQUEST OPTION option

Parameters
counts The counts returned from the encoders
numChannels The number of channels to read into the counts array that was passed in
option The type of count to return

Return value
The return value delivers a response code representing whether the counts were retrieved correctly.

setEncoderType
Set the type of encoder used on the specified channel.

Method
MseResults setEncoderType
(

ENCODER TYPE ENUM encoderType,
const unsigned short channel
)
Parameters
encoderType The type of encoder to use for calculating the position value
channel The channel to set the encoder type of indexed from 0
Return value
MseResults A response code representing whether the method succeeded

setUom
Set the unit of measurement on the specified channel. This value will be applied to the position when getPositions is called.

Method
MseResults setUom

(

UoM uom,
const unsigned short channel
)
Parameters
uom The unit of measurement to use for computing the position value
channel The channel to set the uom for indexed from 0
Return value
MseResults A response code representing whether the method succeeded

192 Library software

setLineCount

Set the line count of the encoder for the specified channel.

Method

MseResults setLineCount

(

unsigned long lineCount,
const unsigned short channel
) ;
Parameters
lineCount The line count of the encoder to use for computing the position value
channel The channel to set the line count for indexed from 0

Return value

MseResults

getLineCount

A response code representing whether the method succeeded

Get the line count of the encoder for the specified channel.

Method

MseResults getLineCount

(

)

Parameters

lineCount

channel

Return value

MseResults

setSignalPeriod

unsigned long* lineCount,
const unsigned short channel

A pointer to the location where the line count of the encoder used for computing the position
value will be stored

The channel to get the line count of indexed from 0

A response code representing whether the method succeeded

Set the signal period of the encoder for the specified channel.

Method

MseResults setSignalPeriod

(

)

Parameters
signalPeriod

channel

Return value

MseResults

HEIDENHAIN MSElibrary

unsigned long signalPeriod,
const unsigned short channel

The signal period of the encoder to use for computing the position value

The channel to set the signal period for indexed from 0

A response code representing whether the method succeeded

193

TTL methods and functions

TTL methods and functions

getSignalPeriod
Get the signal period of the encoder for the specified channel.

Method
MseResults getSignalPeriod
(

unsigned long* signalPeriod,
const unsigned short channel
)
Parameters
signalPeriod A pointer to the location where the signal period of the encoder used for computing the posi-
tion value will be stored
channel The channel to get the signal period of indexed from 0

Return value

MseResults A response code representing whether the method succeeded

setCountingDirection
Set the counting direction of the encoder for the specified channel.

Method
MseResults setCountingDirection

(

const unsigned char direction,
const unsigned short channel
)
Parameters
direction The counting direction of the encoder. A value of 0 is used for normal and 1 for inverted.
channel The channel to set the counting direction for indexed from 0
Return value
MseResults A response code representing whether the method succeeded

setChannelPresence
Set the connection status of the encoder for the specified channel.

Method
MseResults setChannelPresence

(

unsigned char isConnected,
unsigned char channel
)
Parameters
isConnected A value of 1 if the channel is populated, otherwise 0
channel The channel to set the presence for indexed from O
Return value
MseResults A response code representing whether the method succeeded

194 Library software

getChannelPresence

Get the connection status of the encoder for the specified channel.

Method

MseResults getChannelPresence

Parameters
isConnected

channel

Return value

MseResults

isReferencingComplete

(
unsigned char* isConnected,
unsigned char channel

)

A pointer to the location where the channel presence will be stored

The channel to get the presence of indexed from 0

A response code representing whether the method succeeded

Gets whether the referencing has been completed for an encoder on the specified channel.

Method

MseResults isReferencingComplete

Parameters
channel

isComplete

Return value

MseResults

initReferencing

(
const unsigned char channel,
bool* isComplete

)

The channel to get the referencing state of indexed from 0

A pointer to the location where the referencing state value will be stored. A value of True is
returned if referencing is complete.

A response code representing whether the method suc-
ceeded

Initializes the parameters used for determining absolute position of a specified encoder.

Method

MseResults initReferencing

Parameters
channel
refMarkType

value

Return value

MseResults

HEIDENHAIN MSElibrary

(

const unsigned char channel,
const REFERENCE MARK ENUM refMarkType,
const unsigned short value

The channel to initialize the referencing of indexed from 0
The type of referencing used by the encoder

This is the signal period of a linear encoder and the line count for a rotary encoder

A response code representing whether the method succeeded

195

TTL methods and functions

TTL methods and functions

acknowledgeReferencing

Used to send an acknowledge to the module informing it that the asynchronous reference complete message was received.
If asynchronous communication is used and this is not sent, the module will keep sending reference complete messages.

Method
MseResults acknowledgeReferencing

(

const unsigned char channel
)
Parameters
channel The channel to acknowledge the referencing of indexed from 0
Return value
MseResults A response code representing whether the method succeeded

getReferencingState

Gets the state of the referencing for the desired channel. This method should be called after isReferencingComplete is true or
before acknowledgeReferencing is sent in order to check if referencing succeeded. Referencing succeeds if the refMarkState
is REF_MARK_FINISHED.

Method
MseResults getReferencingState
(
const unsigned char channel,
REF MARK STATE* refMarkState
) i

Parameters
channel The channel to get the referencing state indexed from 0
refMarkState The state of the referencing. See the REF_MARK_STATE enumeration for more information.

Return value
The return value delivers a response code representing whether the command was successful.

getFpgaRevision
Get the revision of the FPGA code used in the module.

Method
MseResults getFpgaRevision
(

unsigned shortx* revision
);
Parameters
revision A pointer to the location where the FPGA revision will be stored. The revision is in the form

OxMMmm, where MM is the major version and mm is the minor version (e.g. 0x0100 is
V1.00).

Return value

MseResults A response code representing whether the method succeeded

196 Library software

C Functions
The TTL module C functions can be found in the MseTtIModuleWrapper.h file.

MseTtIModuleCreate
Creates a MseTtIModule object and returns a pointer to it.

Function
MseTt1lModulePtr MseTtlModuleCreate
(
)

Return value

The return value delivers a pointer to the MseTtIModule object that was created.

MseTtIModuleDelete
Deletes the MseTtIModule object that was passed in.

Function
void MseTtlModuleDelete

(
MseTt1lModulePtr object

)

Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function

MseTtIModulelnitialize
Initializes the MseTtIModule object that was passed in.

Function
MSE_RESPONSE CODE MseTtlModulelInitialize
(

MseTt1lModulePtr object,

char* mseIpAddress,

bool useAsync

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
mselpAddress The IP address of the module to initialize
useAsync Whether to enable asynchronous communication from the module

Return value

The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary

197

TTL methods and functions

MseTtIModuleGetNumChannels
Gets the number of channels on the module.

Function
MSE RESPONSE CODE MseTtlModuleGetNumChannels
(

MseTt1lModulePtr object,
unsigned shortx* numChannels
)
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
numChannels A pointer to the location where the number of channels will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

TTL methods and functions

MseTtIModuleSetEncoderType
Set the type of encoder used on the specified channel.

Function
MSE RESPONSE CODE setEncoderType
(

MseTtlModulePtr object,

ENCODER TYPE ENUM encoderType,

const unsigned short channel

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
encoderType The type of encoder to use for calculating the position value
channel The channel to set the encoder type of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleGetEncoderType
Get the type of encoder used on the specified channel.

Function
MSE RESPONSE CODE getEncoderType
(

MseTt1lModulePtr object,

ENCODER TYPE ENUM* encoderType,

const unsigned short channel

)
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
encoderType A pointer to the location where the type of encoder to use for calculating the position value
will be stored

channel The channel to get the encoder type of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

198 Library software

MseTtIModuleSetUom
Sets the unit of measurement to use for the specified channel when requesting position.

Function
MSE_RESPONSE_CODE MseTtlModuleSetUom
(

MseTt1lModulePtr object,

UOM uom,

short channel

);
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
uom The unit of measurement to use when requesting position for the specified channel
channel The channel to set the unit of measurement of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtiIModuleGetUom
Gets the unit of measurement used for the specified channel when requesting position.

Function
MSE RESPONSE CODE MseTtlModuleGetUom
(

MseTt1lModulePtr object,

UOM* uom,

short channel

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
uom A pointer to the location where the unit of measurement will be stored
channel The channel to get the unit of measurement of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleSetErrorCompensation
Set the error compensation used on the specified channel.

Function
MSE RESPONSE CODE setErrorCompensation
(

MseTt1lModulePtr object,

double val,

short channel

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
val The error compensation value to apply when calculating the position
channel The channel to set the error compensation value of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 199

TTL methods and functions

TTL methods and functions

MseTtIModuleGetErrorCompensation
Get the error compensation used on the specified channel.

Function
MSE RESPONSE CODE getErrorCompensation
(

MseTt1lModulePtr object,

double* val,

short channel

)
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
val A pointer to the location where the error compensation value to apply when calculating the
position will be stored

channel The channel to get the error compensation value of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleSetScaling

Sets the device scaling for a specific channel to the desired multiplier. This value will be applied to the position when MseT-
tIGetPositions is called. This differs from the error compensation since the scaling can be used for gear ratios and other fac-
tors.

Function
MSE RESPONSE CODE MseTtlModuleSetScaling
(

MseTt1lModulePtr object,

const double val,

const unsigned short channel

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
val The scaling to use for the channel
channel The channel to set indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleGetScaling

Gets the device scaling for a specific channel. This value will be applied to the position when MseTtlGetPositions is called.
This differs from the error compensation since the scaling can be used for gear ratios and other factors.

Function
MSE RESPONSE CODE MseTtlModuleGetScaling
(

MseTt1lModulePtr object,

double* val,

const unsigned short channel

);
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
val A pointer to the location where the scaling is stored
channel The channel to get indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

200 Library software

MseTtIModuleSetCountingDirection
Set the counting direction of the encoder for the specified channel.

Function
MSE RESPONSE CODE MseTtlModuleSetCountingDirection
(

MseTt1lModulePtr object,

const unsigned char direction,

const unsigned short channel

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
direction The counting direction of the encoder. A value of 0 is used for normal and 1 for inverted.
channel The channel to set the counting direction for indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleGetCountingDirection
Get the counting direction of the encoder for the specified channel.

Function
MSE RESPONSE CODE MseTtlModuleGetCountingDirection
(

MseTt1lModulePtr object,

const unsigned char* direction,

const unsigned short channel

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
direction A pointer to the location where the counting direction of the encoder will be stored
channel The channel to get the counting direction for indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleSetChannelPresence
Set the connection status of the encoder for the specified channel.

Function
MSE RESPONSE CODE MseTtlModuleSetChannelPresence
(

MseTt1lModulePtr object,

unsigned char isConnected,

unsigned char channel

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
isConnected A value of 1 if the channel is populated, otherwise 0
channel The channel to set the presence for indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 201

TTL methods and functions

MseTtiIModuleGetChannelPresence
Get the connection status of the encoder for the specified channel.

Function
MSE RESPONSE CODE MseTtlModuleGetChannelPresence
(

MseTt1lModulePtr object,

unsigned char* isConnected,

unsigned char channel

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
isConnected A pointer to the location where the channel presence will be stored
channel The channel to get the presence of indexed from 0

TTL methods and functions

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleGetResolution

Get the resolution of the encoder for the specified channel. The resolution is calculated when the MseTtlIModuleSetLine-
Count or MseTtIModuleSetSignalPeriod is called.

Function
MSE RESPONSE CODE MseTtlModuleGetResolution
(

MseTt1lModulePtr object,

double* resolution,

short channel

);
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
resolution A pointer to the location where the resolution of the encoder will be stored
channel The channel to get the resolution for indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleSetLineCount
Set the line count and interpolation value of the encoder for the specified channel.

Function
MSE RESPONSE CODE MseTtlModuleSetLineCount
(

MseTt1lModulePtr object,

long lineCount,

TTL INTERPOLATION interpolation,

const unsigned short channel

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
lineCount The line count of the encoder. This value is used for computing the position value.
interpolation The interpolation value of the encoder. This value is used for computing the position value.
channel The channel to set the line count for indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

202 Library software

MseTtiIModuleGetLineCount
Get the line count and interpolation value of the encoder for the specified channel.

Function
MSE_RESPONSE_CODE MseTtlModuleGetLineCount
(

MseTt1lModulePtr object,

long* lineCount,

TTL INTERPOLATION* interpolation,
const unsigned short channel

Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
lineCount A pointer to the location where the line count of the encoder will be stored. This value is used

for computing the position value.

interpolation A pointer to the location where the interpolation value of the encoder will be stored. This value

is used for computing the position value.

channel The channel to get the line count of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleSetSignalPeriod
Set the signal period and interpolation value of the encoder for the specified channel.

Function
MSE RESPONSE CODE MseTtlModuleSetSignalPeriod
(

MseTt1lModulePtr object,
double signalPeriod,
TTL INTERPOLATION interpolation,
const unsigned short channel

Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
signalPeriod The signal period of the encoder. This value is used for computing the position value.

interpolation The interpolation value of the encoder. This value is used for computing the position value.

channel The channel to set the signal period for indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleGetSignalPeriod
Get the signal period and interpolation value of the encoder for the specified channel.

Function
MSE RESPONSE CODE MseTtlModuleGetSignalPeriod
(

MseTt1lModulePtr object,
unsigned long* signalPeriod,
TTL INTERPOLATION* interpolation,
const unsigned short channel

Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
signalPeriod A pointer to the location where the signal period of the encoder will be stored. This value is

used for computing the position value.

interpolation A pointer to the location where the interpolation value of the encoder will be stored. This value

is used for computing the position value.

channel The channel to get the signal period of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 203

TTL methods and functions

TTL methods and functions

MseTtIModuleGetCounts

Get the encoder counts for all channels. The position of a linear encoder, in mm, or a rotary encoder, in degrees, can be ob-
tained by multiplying the counts by the resolution value obtained from MseTtIModuleGetResolution.

Function
MSE_RESPONSE_CODE MseTtlModuleGetCounts
(

MseTt1lModulePtr object,
unsigned long* counts,
short numChannels,

COUNT_REQUEST OPTION option

Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
counts A pointer to the location where the encoder counts will be stored. This array must be large
enough to store MAX_CHANNELS_PER_MODULE.
numChannels The size of the counts array passed in
option Whether to get the latest counts or the latched counts

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleGetPositions

The getPositions method is used to get the position of a specific TTL encoder in user units. The MseTtIModuleSetEncoder
Type, MseTtIModuleSetUom, and MseTtIModuleSetLineCount or MseTtIModuleSetSignalPeriod methods must be called
before calling this method.

The resulting position is determined by first multiplying the count by the error compensation, then multiplying by the scaling,
then computing the position based on the resolution, then converting to the correct UOM, then adding the device offset, and
finally formatting the rotary position if necessary.

The error compensation is set with the MseEndatModuleSetErrorCompensation function, it defaults to 1.0.

The scaling is set with the MseEndatModuleSetScaling function, it defaults to 1.0.

The resolution is calculated based on the MseTtIModuleSetLineCount or MseTtIModuleSetSignalPeriod values.

The UOM is set with MseTtIModuleSetUom, it defaults to UOM_RAW_COUNTS and MseTtIModuleGetPositions will not do
any position calculations until set.

The device offset is set with the MseTtIModuleSetDeviceOffset function, it defaults to 0.0.

The rotary format can be changed with the MseTtIModuleSetRotaryFormat function, it defaults to ROTARY_FORMAT_360.

Function
MSE RESPONSE CODE MseTtlModuleGetPositions
(

MseTt1lModulePtr object,
double* pos,
unsigned short numChannels,

COUNT REQUEST OPTION option

Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
pos The location where the position will be stored
numChannels The number of doubles in the pos array passed in
option Whether to read live or latched positions

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

204 Library software

MseTtIModuleSetRotaryFormat

The MseTtIModuleSetRotaryFormat method is used to set the rotary format that will be applied to the position calculated
from the counts in the MseTtIModuleGetPositions function.

Function
MSE RESPONSE CODE MseTtlModuleSetRotaryFormat
(

MseTt1lModulePtr object,

unsigned short channel,

ROTARY FORMAT format

);
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
channel The channel of the encoder to apply the rotary format to
format The ROTARY_FORMAT to apply

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleGetRotaryFormat

The MseTtIModuleGetRotaryFormat method is used to return the rotary format that will be applied to the position calculated
from the counts in the MseTtIModuleGetPositions function.

Function
MSE RESPONSE CODE MseTtlModuleGetRotaryFormat
(

MseTt1lModulePtr object,

unsigned short channel

ROTARY FORMAT* format

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
channel The channel of the encoder that the rotary format will be applied to
format A pointer to the location where the rotary format will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleSetDeviceOffset

The MseTtIModuleSetDeviceOffset method is used to set the offset that will be applied to the position calculated from the
counts in the MseTtIModuleGetPositions function.

Function
MSE RESPONSE CODE MseTtlModuleSetDeviceOffset
(

MseTt1lModulePtr object,

unsigned short channel,

double offset

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
channel The channel of the encoder to apply the offset to
offset The offset to apply

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 205

TTL methods and functions

MseTtIModuleGetDeviceOffset

The MseTtIModuleGetDeviceOffset method is used to return the offset that will be applied to the position calculated from
the counts in the MseTtIModuleGetPositions function.

Function
MSE RESPONSE CODE MseTtlModuleGetDeviceOffset
(

TTL methods and functions

MseTt1lModulePtr object,

unsigned short channel

double* offset

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
channel The channel of the encoder that the offset will be applied to
offset A pointer to the location where the offset will be stored

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleSetLatch
Set or clear the desired latch for the entire module chain.

Function
MSE RESPONSE CODE MseTtlModuleSetLatch
(

MseTt1lModulePtr object,

LATCH OPTIONS option,

LATCH CHOICE latchChoice

);
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
option Set or reset the module chain latch. Set is only used on a base module. The reset functions as
a clearing of the latch and must be called on the base module first.

latchChoice The type of latch to set or clear

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleGetLatches
Gets the latches that are active.

Function
MSE RESPONSE CODE MseTtlModuleGetLatches
(

MseTt1lModulePtr object,
char¥* latchState,
short size
);
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
latchState A pointer to the location where the latch state(s) will be stored. This is an array that is must be
large enough to store NUM_LATCH_TYPES. The non-base modules only utilize the first latch
state in the array.
size The size of the latchState array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

206 Library software

MseTtIModuleGetModuleErrorState

Gets the error state of the module. A value of True signifies that there is an error. Refer to System integrity on page 227 for
more information.

Function
MSE RESPONSE CODE MseTtlModuleGetModuleErrorState
(

MseTt1lModulePtr object,
bool* errorState
);
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
errorState A pointer to the location where the error state will be stored. A subsequent call to MseTtl-

ModuleGetModuleErrors can be made to get the actual errors.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtiIModuleGetModuleErrors
Gets the errors specific to the module. Refer to System integrity on page 227 for more information.

Function
MSE RESPONSE CODE MseTtlModuleGetModuleErrors
(

MseTt1lModulePtr object,
long* errors,
double* ranges,
short size
);
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
errors A pointer to the location where the errors state will stored. The errors is a single long that can
be masked with the INTEGRITY_ENUMS to determine which error has occurred.
ranges A pointer to the location where the ranges used to determine an error will be stored. The
ranges is an array that must be large enough to hold NUM_INTEGRITY_RANGES.
size The size of the ranges array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleEnableDiags
Sets the diagnostic mode for the channels and module. Refer to Diagnostic modes on page 231 for more information.

Function
MSE_RESPONSE_ CODE MseTtlModuleEnableDiags
(

MseTt1lModulePtr object,
DIAG _MODE OPTIONS choice
)
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
choice The desired level of diagnostics

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 207

TTL methods and functions

TTL methods and functions

MseTtiIModuleGetAdcValues
Gets the voltage and temperature values for the module.

Function
MSE_RESPONSE_CODE MseTtlModuleGetAdcValues
(

MseTt1lModulePtr object,
short* adcVals,
short size
)
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
adcVals A pointer to the location where the voltage and temperature values will be stored. Must be
large enough to hold ADC_NUM_CHANNELS. The ADC_OPTIONS enumeration can be used
to index into the adcVals array.
size The size of the adcVals array passed in

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleClearErrors
Clears the module and channel errors and warnings.

Function
MSE RESPONSE CODE MseTtlModuleClearErrors

(
MseTt1lModulePtr object

)

Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModulelsReferencingComplete
Gets whether the referencing has been completed for an encoder on the specified channel.

Function
MSE RESPONSE CODE MseTtlModuleIsReferencingComplete
(
MseTt1lModulePtr object,
const unsigned char channel,
boolx* isComplete

Parameters

object A pointer to the MseTtIModule object that was created by
the MseTtIModuleCreate function

channel The channel to get the referencing state of indexed from 0

isComplete A pointer to the location where the referencing state value
will be stored. A value of True is returned if referencing is
complete.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

208 Library software

MseTtIModuleStartReferencing
Initializes the parameters used for determining absolute position of a specified encoder.

Function
MSE_RESPONSE_CODE MseTtIModuleStartReferencing
(

MseTt1lModulePtr object,
const unsigned short channel,
const REFERENCE MARK ENUM refMarkType,
const unsigned short value
)
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
channel The channel to initialize the referencing of indexed from 0
refMarkType The type of referencing used by the encoder
value This is the signal period of a linear encoder and the line count for a rotary encoder

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleAcknowledgeReferencing

Used to send an acknowledge to the module informing it that the asynchronous reference complete message was received.
If asynchronous communication is used and this is not sent, the module will keep sending reference complete messages.

Function
MSE RESPONSE CODE MseTtlModuleAcknowledgeReferencing
(

MseTt1lModulePtr object,
const unsigned char channel
)
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
channel The channel to acknowledge the referencing of indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleGetReferencingState

Gets the state of the referencing for the desired channel. This method should be called after isReferencingComplete is true or
before acknowledgeAbsolutePosition is sent in order to check if referencing succeeded. Referencing succeeds if the refMark-
State is REF_MARK_FINISHED.

Method
MseResults MseTtlModuleGetReferencingState
(

MseTt1lModulePtr object,

const unsigned char channel,

REF MARK STATE* refMarkState

);
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
channel The channel to get the referencing state indexed from 0
refMarkState A pointer to the location where the state of the referencing will be stored. See the REF_

MARK_STATE enumeration for more information.

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

HEIDENHAIN MSElibrary 209

TTL methods and functions

TTL methods and functions

MseTtiIModuleGetFpgaRevision
Get the revision of the FPGA code used in the module.

Function
MSE RESPONSE CODE MseTtlModuleGetFpgaRevision
(

MseTt1lModulePtr object,
unsigned shortx* revision
)
Parameters
object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
revision A pointer to the location where the FPGA revision will be stored. The revision is in the form
OxMMmm, where MM is the major version and mm is the minor version (e.g. 0x0100 is
V1.00).

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtIModuleGetChannelErrorState

Gets the error state of a channel. An errorState of 1 signifies a COUNTER_STATUS_EDGE_DISTANCE_ERROR error. Errors
can be cleared with the MseTtIModuleClearErrors function

Function
MSE RESPONSE CODE MseTtlModuleGetChannelErrorState
(

MseTtlModulePtr object,

bool* errorState,

short channel

);
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
errorState A pointer to the location where the error state will be copied to
channel The channel to get

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

MseTtiIModuleEnableErrorChecking

Sets whether error checking will be done on the specified channel. The channel defaults to enabled on power up of the
module and will be checked as long as the channel is populated and the error checking is enabled. The channel status can be
checked with the MseTtIModuleGetChannelErrorState when error checking is enabled.

Function
MSE_RESPONSE CODE MseTtlModuleEnableErrorChecking
(

MseTt1lModulePtr object,

const bool choice,

const unsigned short channel

)
Parameters

object A pointer to the MseTtIModule object that was created by the MseTtIModuleCreate function
choice True to enable error checking, false to disable
channel The channel to enable or disable error checking on indexed from 0

Return value
The return value delivers a MSE_RESPONSE_CODE representing whether the function call was successful.

210 Library software

2.19 Asynchronous methods

The MSE modules utilize Ethernet for communication. The client software that utilizes this library can poll constantly for
errors, warnings, latching triggers, etc... or it can create a thread and wait on a socket connected to the MSE_ASYNC_PORT.
The MSE modules will send UDP_CONNECT messages once every ten seconds at startup until a connection is obtained
via initialization of a module or by disabling the asynchronous communication manually with the setAsyncMode method. The
other asynchronous messages are only sent out if the client subscribes using the useAsync parameter during initialization.

getAsyncMsgType

The getAsyncMsgType method is static and is used to get the type of asynchronous message that was received from the
MSE . A subsequent decode request needs to be sent to get the data from the message.

Method
UdpCmdType getAsyncMsgType
(

char* msg
)
Parameters
msg The initial message received from the asynchronous port
Return value
UdpCmdType The type of message received

decodeConnectMsg

The decodeConnectMsg method is static and is used to decode a UDP_CONNECT asynchronous message from the MSE .
The UdpCmdType is validated and the message is then decoded and returned in a MSEConnectResponse structure. Connect
messages will stop being sent once initialization is done for the module.

Method
MseResults decodeConnectMsg

(

char* msqg,
MSEConnectResponse* resp
);
Parameters
msg A pointer to the UDP packet that was sent from the module
resp A pointer to a MSEConnectResponse structure to store the decoded message to
Return value
MseResults A response code representing whether the decodeConnectMsg command was completed

HEIDENHAIN MSElibrary 21

Asynchronous methods

Asynchronous methods

decodelLatchMsg

The decodelatchMsg method is static and is used to decode a UDP_LATCH asynchronous message from the MSE . The
UdpCmdType is validated and the message is then decoded. The latch states are stored in the array passed in. The module’s
must read their data with the COUNT_REQUEST_OPTION parameter set to COUNT_REQUEST_LATCHED, or the latch must
be manually cleared in order to acknowledge the latch.

Method
MseResults decodelLatchMsg
(
char* msg,
unsigned char* latchvals
)
Parameters
msg A pointer to the UDP packet that was sent from the module
latchVals value of 0 if not latched or 1 if latched
Return value
MseResults A response code representing whether the decodelLatchMsg command was completed

decodeChannelStatusMsg

The decodeChannelStatusMsg method is static and is used to decode a UDP_CHANNEL_STATUS asynchronous message
from the MSE . The UdpCmdType is validated and the message is then decoded. The UDP_CHANNEL_STATUS informs the
listener if warning, error, or reference completion of a channel has occured.
The getWarnings or getErrors method must be called to acknowledge the asynchronous message if it is a warning or error
message for an EnDat module.
A getChannelStatus method must be called to acknowledge the asynchronous message if it is an error message fora TTL or
1Vpp module.
An acknowledgeAbsolutePosition method must be called to acknowledge the asynchronous message if it is a reference
complete message for a 1Vpp module.
An acknowledgeReferencing method must be called to acknowledge the asynchronous message if it is a reference complete
message for a TTL module.
Method

MseResults decodeChannelStatusMsg

(

char* msg,
unsigned shortx* type,
unsigned shortx* axis
)
Parameters
msg A pointer to the UDP packet that was sent from the module
type The type of channel status. 1 is for warnings and errors, 2 is for reference complete
axis The channel for reference complete acknowledgement indexed from 0. This parameter is

not used for warnings and errors.

Return value

MseResults A response code representing whether the decodeChannelStatusMsg command was completed

212 Library software

2.20 ModuleConfig Base/Reader/Writer

C++ methods and the C functions are separated into two sections for easier lookup.

C++ Methods

The MSE module chain can be determined with the createChain() method. The MSEsetup application calls the createChain()
method and stores all of the module and channel information in a file called ModuleConfig.xml. The MSEsetup application
stores much more information that is used to configure the chain such as the module labels, channel units of measurement,
etc... This file can be read and updated via the MseConfigReader and MseConfigWriter classes.

The MseConfigBase class contains methods that are common to the reader and the writer. The MseConfigReader is derived
from the MseConfigBase and has additional methods specific to reading the ModuleConfig data. The MseConfigWriter is de-
rived from the MseConfigReader in order to allow for read and write functionality. The MseConfig\Writer was originally derived
directly from the MseConfigBase but caused unnecessary complexity and overhead from needing two instantiated classes
for reading and writing.

MseConfigBase

loadXml

The loadXml method loads the ModuleConfig file passed in into memory using the DOM XML standard. This method must
be called before any of the accessor methods can be used.

Method
MSE XML RETURN loadXml
(

const std::stringé& filename;
)
Parameters

filename The filename of the ModuleConfig XML file to be loaded into memory

Return value

MSE_XML_RETURN A response code representing whether the loadXml command was successful

reloadXml

The reloadXml method reloads the ModuleConfig file that was previously passed in into memory. This method is useful for
keeping the DOM data that is in memory synchronized with changes in the XML file.

Method
MSE XML RETURN reloadXml
(
);
Return value

MSE_XML_RETURN A response code representing whether the reloadXml command was successful

decodeErrorType

The decodeErrorType method returns a string representation of the MSE_XML_RETURN enumeration. This method is static
and can be called without having to instantiate a MseConfigBase object.

Method
static std::string decodeErrorType

(
const MSE XML RETURN& type;

)

Parameters
type The MSE_XML_RETURN enumeration to stringify

Return value

std::string The string representation of the enumeration

HEIDENHAIN MSElibrary 213

ModuleConfig Base/Reader/Writer

ModuleConfig Base/Reader/Writer

decodeElementType

The decodeElementType method returns a string representation of the MSE_XML_ELEMENTS enumeration. This method is
static and can be called without having to instantiate a MseConfigBase object.

Method
static std::string decodeElementType

(
const MSE XML ELEMENTS& type;

)
Parameters
type The MSE_XML_ELEMENTS enumeration to stringify

Return value

std::string The string representation of the enumeration

getFilename
The getFilename method returns the filename as a string. If the filename has not been set, an empty string is returned.

Method
std::string getFilename
(
)
Return value

std::string The filename or an empty string

removeSpecificModuleNode
The removeSpecificModuleNode deletes the specified node and all of its children.

Method

void removeSpecificModuleNode

(

const unsigned shorté& moduleNum

)
Parameters

moduleNum The module to remove indexed from 1
MseConfigReader

The loadXml method must be called after the MseConfigReader class is instantiated before any of the accessor methods can
be used.

Constructor
MseConfigReader (void) ;

getElement

The getElement method searches the DOM data that is loaded in memory for all instances of the tagname requested. The
element data for each match is added to a string with a newline separating each.

Method
MSE_ XML RETURN getElement

(
const MSE XML ELEMENT& tagname,
std::stringé& value

)

Parameters
tagname The XML tag to look for
value All of the matching element data is stored in this parameter

Return value

MSE_XML_RETURN A response code representing whether the getElement command was successful

214 Library software

getElement

The getElement method searches the DOM data that is loaded in memory for a specific element based on the tagname
requested. The tagname is searched only in the module requested.

Method
MSE XML RETURN getElement
(
const MSE XML ELEMENT& tagname,
std::stringé& value,
const unsigned short& moduleNum

Parameters
tagname The XML tag to look for
value The matching element data is stored in this parameter
moduleNum The module to search for the tagname indexed from 1

Return value
MSE_XML_RETURN A response code representing whether the getElement command was successful

getElement

The getElement method searches the DOM data that is loaded in memory for a specific element based on the tagname
requested. The tagname is searched only in the specific module and channel requested.

Method
MSE XML RETURN getElement
(
const MSE XML ELEMENT& tagname,
std::stringé& value,
const unsigned short& moduleNum,
const unsigned short& channelNum

Parameters
tagname The XML tag to look for
value The matching element data is stored in this parameter
moduleNum The module to search for the tagname indexed from 1
channelNum The channel to search for the tagname indexed from 1

Return value
MSE_XML_RETURN A response code representing whether the getElement command was successful

getAllElements
The getAllElements method returns the entire XML file as a string and retains the XML formatting.

Method
MSE_ XML RETURN getAllElements
(

std::stringé& value

)

Parameters

value All of the element data is stored in this parameter

Return value
MSE_XML_RETURN A response code representing whether the getAllElements command was successful

HEIDENHAIN MSElibrary

215

ModuleConfig Base/Reader/Writer

ModuleConfig Base/Reader/Writer

validateElements

The validateElements method checks if all the module and channel elements exist in the file. If they do not, the file has been
invalidated.

Method
MSE XML RETURN validateElements
(

MSE XML ELEMENTS& elementReturn,
unsigned shorté& moduleNumReturn,
unsigned shorté& channelNumReturn
);
Parameters
elementReturn A reference to an enumeration that is filled in with the name of the element that failed valida-

tion. This is only used if the return code is MXE_XML_RETURN_TAGNAME_NOT_FOUND.

moduleNumReturn A reference to an unsigned short that is filled in with the module number of the element that
failed validation. This is only used if the return code is MXE_XML_RETURN_TAGNAME_NOT_
FOUND.

channelNumReturn A reference to an unsigned short that is filled in with the channel number of the element that
failed validation. This is only used if the return code is MXE_XML_RETURN_TAGNAME_NOT_
FOUND.

Return value

MSE_XML_RETURN A response code representing whether the validateElements command was successful

getSpecificModule
The getSpecificModule method returns all of the element tag names and corresponding data for a specific module.

Method
std::string getSpecificModule
(

const unsigned shorté& moduleNum

)

Parameters

moduleNum The number of the module to request element data of indexed from 1

Return value

std::String A string containing the module element data in csv format separated by new lines. Returns an
empty string if there is an error.

getSpecificChannel
The getSpecificChannel method returns all of the element tag names and corresponding data for a specific channel.

Method
std::string getSpecificChannel
(
const unsigned shorté& moduleNum,
const unsigned shorté& channelNum

)

Parameters
moduleNum The number of the module to request element data of indexed from 1
channelNum The number of the channel to request element data of indexed from 1

Return value

std::String A string containing the channel element data in csv format separated by newlines. Returns an
empty string if there is an error.

216 Library software

getNumModules
The getNumModules method returns the number of modules in the XML file.

Method
MSE XML RETURN getNumModules
(

unsigned short& numModules
)

Parameters

numModules The number of the modules in the XML file

Return value
MSE_XML_RETURN A response code representing whether the getNumModules command was successful

getNumChannels
The getNumChannels method returns the number of channels for a specific module in the XML file.

Method
MSE_XML_RETURN getNumChannels
(
const unsigned short& moduleNum,
unsigned shorté& numChannels

)

Parameters
moduleNum The module number to request the number of channels indexed from 1
numChannels The number of the channels in the XML file for the specified module

Return value

MSE_XML_RETURN A response code representing whether the getNumChannels command was successful
MseConfigWriter

The loadXml method must be called after the MseConfigWriter class is instantiated before any of the accessor methods can
be used.

Constructor

MseConfigWriter (void) ;

setElement

The setElement method sets the element data for a specific module tagname. This method just sets the data in memory. A

subsequent writeFile() must be performed to permanently save the DOM data to the file.

Method
MSE_ XML RETURN setElement
(
const MSE XML ELEMENT& tagname,
const std::string& value,
const unsigned short& moduleNum

Parameters
tagname The XML tag to look for
value The value to set the element data to for the tagname
moduleNum The module to use for finding the tagname indexed from 1

Return value

MSE_XML_RETURN A response code representing whether the setElement command was successful

HEIDENHAIN MSElibrary

217

ModuleConfig Base/Reader/Writer

ModuleConfig Base/Reader/Writer

setElement

The setElement method sets the element data for a specific channel tagname. This method just sets the data in memory. A

subsequent writeFile() must be performed to permanently save the DOM data to the file.

Method
MSE XML RETURN setElement
(
const MSE XML ELEMENT& tagname,
const std::string& value,
const unsigned short& moduleNum,
const unsigned short& channelNum

Parameters
tagname The XML tag to look for
value The value to set the element data to for the tagname
moduleNum The module to use for finding the tagname indexed from 1
channelNum The channel to use for finding the tagname indexed from 1

Return value

MSE_XML_RETURN A response code representing whether the setElement command was successful

writeFile
The writeFile method writes the DOM data to the file loaded from the loadXml method.

Method
MSE_ XML RETURN writeFile
(
) 7
Return value

MSE_XML_RETURN A response code representing whether the writeFile command was successful

writeFile
The writeFile method writes the DOM data to the desired file.

Method
MSE XML RETURN writeFile
(

const std::stringé& filename

)

Parameters

filename The filename to write the DOM data to

Return value

MSE_XML_RETURN A response code representing whether the writeFile command was successful

218

Library software

C Functions
The Configuration file C functions can be found in the MseConfigFileWrapper.h file

MseConfigFileCreate
Creates a MseConfigWriter object and returns a pointer to it.

Function
MseConfigFilePtr MseConfigFileCreate
(
)7

Return value

The return value delivers a pointer to the MseConfigWriter object that was created.

MseConfigFileDelete
Deletes the MseConfigWriter object that was passed in.

Function
void MseConfigFileDelete

(
MseConfigFilePtr object

)

Parameters

object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function

MseConfigFileLoadXml
Load the module config XML file into memory.

Function
MSE XML RETURN MseConfigFileLoadXml
(

MseConfigFilePtr object,
char* filename,
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
filename The path and filename of the module config XML file

Return value

The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileReloadXml
Reload the module config XML file into memory.

Function
MSE XML RETURN MseConfigFileLoadXml

(
MseConfigFilePtr object

)

Parameters

object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function

Return value

The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

HEIDENHAIN MSElibrary

219

ModuleConfig Base/Reader/Writer

MseConfigFileGetFilename
Get the filename that is loaded into memory.

Function
MSE XML RETURN MseConfigFileGetFilename
(

MseConfigFilePtr object,
char* filename,
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
filename A pointer to the location where the filename will be stored

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileDecodeErrorType
Decodes a MSE_XML_RETURN type as a string.

ModuleConfig Base/Reader/Writer

Function
MSE XML RETURN MseConfigFileDecodeErrorType
(

MseConfigFilePtr object,
char* decodedErrorType,
MSE_XML RETURN type
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function

decodedErrorType A pointer to the location where the decoded error type will be stored
type The MSE_XML_RETURN enumeration to decode

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileDecodeElementType
Decodes a MSE_XML_ELEMENTS type as a string.

Function
MSE XML RETURN MseConfigFileDecodeElementType
(

MseConfigFilePtr object,
char¥* decodedElementType,
MSE_ XML ELEMENTS type
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate func-
tion

decodedElementType A pointer to the location where the decoded element type will be stored
type The MSE_XML_ELEMENTS enumeration to decode

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

220 Library software

MseConfigFileGetElement
Get the data for all instances of the desired element.

Function
MSE XML RETURN MseConfigFileGetElement
(

MseConfigFilePtr object,

char~* data,

MSE XML ELEMENTS tagname

) ;
Parameters

object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
data A pointer to the location where the data will be stored. Each instance is separated by a newline.
tagname The element to find

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileGetModuleElement
Get the data for the desired element of a module.

Function
MSE XML RETURN MseConfigFileGetModuleElement

(

MseConfigFilePtr object,
char* data,
short module,
MSE XML ELEMENTS tagname
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
data A pointer to the location where the data will be stored
module The module to look for the element indexed from 1
tagname The element to find

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileGetChannelElement
Get the data for the desired element of a channel within a module.

Function
MSE XML RETURN MseConfigFileGetChannelElement

(

MseConfigFilePtr object,
char* data,
short module,
short channel,
MSE XML ELEMENTS tagname
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
data A pointer to the location where the data will be stored
module The module to look for the element indexed from 1
channel The channel to look for the element indexed from 1
tagname The element to find

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

HEIDENHAIN MSElibrary 221

ModuleConfig Base/Reader/Writer

ModuleConfig Base/Reader/Writer

MseConfigFileGetAllElements
Get the entire XML file.

Function
MSE XML RETURN MseConfigFileGetAllElements
(

MseConfigFilePtr object,
char¥* data
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
data A pointer to the location where the data will be stored

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileValidateElements

The MseConfigFileValidateElements method checks if all the module and channel elements exist in the file. If they do not,
the file has been invalidated.

Method
MSE XML RETURN MseConfigFileValidateElements
(

MseConfigFilePtr object,
MSE XML ELEMENTS* elementReturn,
unsigned short* moduleNumReturn,
unsigned short* channelNumReturn
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate func-
tion
elementReturn A pointer to the location where the name of the element that failed validation will be stored.

This is only used if the return code is MXE_XML_RETURN_TAGNAME_NOT_FOUND.

moduleNumReturn A pointer to the location where the module number of the element that failed validation
will be stored. This is only used if the return code is MXE_XML_RETURN_TAGNAME_NOT_
FOUND.

channelNumReturn A pointer to the location where the channel number of the element that failed validation
will be stored. This is only used if the return code is MXE_XML_RETURN_TAGNAME_NOT_
FOUND.

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileGetAllElements
Get the entire XML file.

Function
MSE_ XML RETURN MseConfigFileGetAllElements

(

MseConfigFilePtr object,
char* data
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate func-
tion
data A pointer to the location where the data will be stored

222 Library software

MseConfigFileGetSpecificModule
Get all of the elements and data for the desired module.

Function
MSE XML RETURN MseConfigFileGetSpecificModule
(

MseConfigFilePtr object,
char~* data,
short module
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
data A pointer to the location where the data will be stored. The data for each element is returned as
the element name, followed by a comma, followed by the data, followed by a newline.
module The module to look for elements indexed from 1

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileGetSpecificChannel
Get all of the elements and data for the desired channel of a module.

Function
MSE XML RETURN MseConfigFileGetSpecificModule

(

MseConfigFilePtr object,
char* data,
short module,
short channel
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
data A pointer to the location where the data will be stored. The data for each element is returned as
the element name, followed by a comma, followed by the data, followed by a newline.
module The module to look for elements indexed from 1
channel The channel to look for elements indexed from 1

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileGetNumModules
Get the number of modules in the XML file.

Function
MSE XML RETURN MseConfigFileGetNumModules

(

MseConfigFilePtr object,
short* numModules
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
numModules A pointer to the location where the number of modules will be stored

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

HEIDENHAIN MSElibrary 223

ModuleConfig Base/Reader/Writer

ModuleConfig Base/Reader/Writer

MseConfigFileGetNumChannels
Get the number of channels in the XML file.

Function
MSE XML RETURN MseConfigFileGetNumChannels
(

MseConfigFilePtr object,

short module,

short* numChannels

)
Parameters

object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
module The module to look for the number of channels indexed from 1
numChannels A pointer to the location where the number of channels will be stored

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileSetModuleElement
Set the value for a module element.

Function
MSE XML RETURN MseConfigFileSetModuleElement
(

MseConfigFilePtr object,
char* data,
short module,
MSE XML ELEMENTS tagname
);
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
data The value to set the element to
module The module to set the element of indexed from 1
tagname The element to set the value of

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileSetChannelElement
Set the value for a channel element.

Function
MSE XML RETURN MseConfigFileSetModuleElement
(

MseConfigFilePtr object,
char* data,
short module,
short channel,
MSE XML ELEMENTS tagname
)
Parameters

object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function

data The value to set the element to

module The module to set the element of indexed from 1

channel The channel to set the element of indexed from 1

tagname The element to set the value of

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

224 Library software

MseConfigFileRemoveModule
Removes the specified module from the XML file.

Function
MSE XML RETURN MseConfigFileRemoveModule
(

MseConfigFilePtr object,
const short moduleNum
)
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
moduleNum The module to remove from the XML file indexed from 1

MseConfigFileWriteFile
Write the data in memory to the file.

Function
MSE XML RETURN MseConfigFileWriteFile

(
MseConfigFilePtr object

);
Parameters

object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

MseConfigFileWriteNewFile
Write the data in memory to a new file.

Function
MSE XML RETURN MseConfigFileWriteNewFile
(

MseConfigFilePtr object,
char* filename
);
Parameters
object A pointer to the MseConfigWriter object that was created by the MseConfigFileCreate function
filename The path and filename of the new file to write the XML data to

Return value
The return value delivers a MSE_XML_RETURN representing whether the function call was successful.

HEIDENHAIN MSElibrary 225

ModuleConfig Base/Reader/Writer

226 Library software

About System Integrity

3.1 About System Integrity

System integrity refers to the monitoring of the Ethernet, programming status, voltages, current, and temperature in the
module.

There is a 4 byte value called systemintegrity that is used to store the masked warnings and errors that are active. The syste-
mintegrity variable is only used for the voltages, current, and temperature monitoring. A value of 0 means that there are no
values out of range.

The system integrity has warning and error ranges for the voltages, current, and temperature monitoring. If the integrity ex-
ceeds a warning or error range, a bit is set in the system integrity. The client code can request the systemlntegrity value and
check if any of the bits are set.

The power and status LEDs on the module are set based on system integrity errors. The warning limit is only used by clients
and does not affect the LEDs.

The getintegrity() method is used to check the systemintegrity.

The clearintegrityErrors() method is used to clear integrity errors.

3.2 Obtaining IP Address

The status LED will flash from green to off at a 5 Hz interval when an IP address is being obtained by DHCP or static ad-
dressing and then applied to the FNET stack.

The LED will change to a 2Hz interval once the IP address is obtained.

3.3 Waiting for Client

The status LED will flash from green to off at a 2 Hz interval when an IP address is obtained and the module is waiting for a
connection to a client.

The LED will change to solid green once the connection to a client is obtained.

3.4 Duplicate IP
The status LED will flash from green to red at a 2 Hz interval when an IP address is already used.

One of the modules with the identical IP address must be disconnected and the IP address of the module that remains con-
nected must be set to a unique value.

3.5 Programming Error

The LED will alternate the power and status LEDs 10 times with a 250ms interval if the MSEfirmware has a checksum error
after completion.

3.6 Ethernet Chip

The LEDs will both flash red 30 times with a 250ms interval if the Ethernet chip has malfunctioned.

228 System integrity

3.7 Current

The current is only monitored on the power supply modules. The current shows how much current is being drawn by subse-
guent modules. If the amount of current being drawn is over the error limit, the power LED will stay red until the condition
and systemintegrity value is cleared.

The current sets a warning if > 2.0 amps for the 100-240V power supply.
The current sets a warning if > 2.9 amps for the 24V power supply.
The current sets an error if > 2.1 amps for the 100-240V power supply.

The current sets an error if > 3.0 amps for the 24V power supply.

3.8 24V

The power LED will toggle between red and green at a rate of once a second until the error is cleared. The status LED is
unaffected.

The 24V sets an error if not between 20 and 28 V.
The 24V sets a warning if not between 21.5 and 26.5V.

3.9 5V

The power LED will toggle between red and green at a rate of once every 2 seconds until the error is cleared. The status LED
is unaffected.

The 5V sets an error if not between 4.8 and 5.5 V.
The 5V sets a warning if not between 4.9 and 5.3V.

3.10 3.3V

The 3.3V is just used for informational purposes and does not affect the LEDs. If the 3.3V is bad, the CPU will stop function-
ing.

3.11 CPU temperature

The power LED will toggle between red and green at a rate of once every 3 seconds until the error is cleared. The status LED
is unaffected.

The temperature sets an error if not between -40 and 110 Celsius.

The temperature sets a warning if not between -30 and 100 Celsius.

3.12 Non-Volatile Memory Backup Failure

The power LED will toggle between red and green at a rate of once every 10 seconds until the error is cleared. The status
LED is unaffected.

This error signifies that the non-volatile configuration data in FRAM memory could not be read and the backup stored in
FLASH memory could not be copied into FRAM. If this error occurs, the module memory has become corrupted. Contact
HEIDENHAIN Support for instructions.

The configuration data contains the module ID, hardware ID, IP address, netmask, MAC address, firmware checksum, pro-
gramming state, bootloader versioning information, and DHCP choice.

HEIDENHAIN MSElibrary 229

Current

Ayubaju] walsAg noqy

System integrity

230

About Diagnostic Modes

4.1 About Diagnostic Modes

Diagnostics are performed within each module in order check for warnings and errors regarding voltages, temperature, and
encoders.

The diagnostics are checked every 200 ms.
There are 4 diagnostic modes. They are full, status, minimal, and off.

Changing the diagnostic modes have a large benefit for EnDat modules since they can cause a lot of latency when running at
‘Full’.

The diagnostic mode is changed with the enableDiags() method.

4.2 Full

Full diagnostics will perform function reserve checking for EnDat modules.
The 1Vpp and TTL modules will perform the same diagnostics as 'Status’.
The other modules will perform the same diagnostics as ‘Minimal’.

The function reserves take 11ms per axis to be performed. The send/receive time for a command to the module will take up
to 11 ms if sent while the function reserve is being obtained. It will take 44ms for a 4x EnDat module to have all four axes
updated and 88 ms for an 8x EnDat module to update all 8 axes.

The read of the channel’s function reserves will be checked once the 200 ms diagnostic timer expires and are broken up so
that one channel is read each time through the main loop. This allows for UDP messages to be sent at any time between
reads.

4.3 Status

The EnDat modules will check for warnings and errors. It takes between 1-2 ms to obtain the error information for a single
channel. This means that it will take 4-8 ms for a 4x module and 8-16 ms for an 8x module. If a V2.1 EnDat encoder is being
used, this delay cannot be removed. If a V2.2 EnDat encoder is being used, changing the diagnostic mode to minimal will
skip checking the warnings and errors and the delay will be 250us per axis.

The errors and warnings for the EnDat module will be read each time the positions are updated (not at the normal 200ms
timing of the diagnostic timer). This is because the error and warning information is combined with the read counts command
when using the EnDat V2.1 protocol and helps in determining if the count is valid.

The 1Vpp modules will check the counter register to verify amplitude, edge distance errors, and filter spikes. The TTL mod-
ules will check the counter register to verify edge distance errors.

The 1Vpp and TTL error checking does not affect the timing since it is performed much faster than the time it takes to request
a UDP command.

The read of the channels for both the EnDat and 1Vpp modules are broken up so that one channel is read each time through
the main loop. This allows for UDP messages to be sent at any time between reads.

The other modules will perform the same diagnostics as ‘Minimal’.

4.4 Minimal

Minimal diagnostics will perform checking of the system integrity. The system integrity is described in the ‘System Integrity’
section.

The system integrity checking does not affect the timing since it is performed much faster than the time it takes to request a
UDP command.

4.5 None

None of the diagnostics will be performed in this mode.

232 Diagnostic modes

ine

About the Trigger L

5.1 About theTrigger Line

A single trigger line is utilized that is electrically connected to all modules. This line is activated by the base module when one
of b latch requests are received. The base module keeps track of the latch requests until the trigger line is cleared. The trigger
line is used for latching data within a small timeframe or for signaling purposes.

The first 3 latch requests are used for software latches. Software latches are received via UDP from an external application.
The 4th latch request is used for footswitch 1. The 5th latch request is used for footswitch 2. The footswitch latch requests
can be activated by an external footswitch or other device that is attached to the footswitch connector on the base module.
The footswitch latch requests can also be activated by a software request if needed.

Once the output line is active, all of the modules will be able to read the line and then latch the data accordingly. The EnDat,
1Vpp, TTL, and LVDT modules will latch the latest count for each axis and store it in buffers. The 1/0 and pneumatic modules
will store the current I/O states. The analog module will store the latest voltage and current.

There is only 1 buffer for storing latched data. The latch must be cleared before the buffer will overwrite the data. The base
module must be cleared before all other modules or the latch will immediately trigger again.

The client software must send a read or a ‘clear latch’ command to clear the latch.

5.2 Software Latency

Latency from a software latch is based on the time it takes for the UDP packet to be sent plus the time it takes for the mod-
ule to store the data.

Most software commands will take less time than it takes for UDP packet transmission which will not add any more over
head other than the UDP transit time.

The EnDat modules level of diagnostics should be changed depending on the throughput desired. The ‘Full’ diagnostic mode
will affect the latch timing dramatically and the “Status’ diagnostic mode will affect the latch timing slightly. The levels are
described in the ‘Diagnostic Modes' section.

All other modules do not have additional latency.

Full Diagnostics

Full diagnostics should not be used if accuracy of the EnDat positions is desired faster than once every 100ms. See the ‘Di-
agnostic Modes’ section for more information.

Status Diagnostics

Status diagnostics should not be used if accuracy of the EnDat positions is desired faster than once every 8-16ms. See the
‘Diagnostic Modes' section for more information.

Minimal Diagnostics

Minimal diagnostics should be used if accuracy of the EnDat positions is desired at the maximum rate. The maximum rate is
250us per axis which is 1Tms for a 4x module and 2 ms for a 8x module.

234 Trigger line

5.3 Debouncing Latency

The 2 footswitch lines assume that a footswitch is attached to the hardware input lines. The default debouncing time for each
line on an EnDat or 1Vpp base module is 10ms. This will add 10ms to the amount of time it takes for the input to be de-
tected. This time does not affect the ability to handle UDP requests since it utilizes a timer instead of holding up the CPU. The
debouncing for the TTL module is negligible.

The debouncing time for each footswitch line can be changed to a value between 0 — 20ms. A value of zero will disable
debouncing.

Disabling debouncing is useful if a different device is attached to the footswitch input that does not have need for debounc-
ing.

The debouncing latency only occurs when the hardware lines are polled to check for change in state. There is no debouncing
if the software simulates a footswitch by setting the 4th or 5th trigger output.

Debouncing can be modified on an EnDat or 1Vpp base module with the setLatchDebouncing() method.

5.4 Setting aTrigger

The footswitch can be used to set the trigger and the base module will store that latch 4 or 5 occured.

The setLatch() method is used to cause a trigger to be set. Any of the latch requests can cause a latch trigger with this com-
mand.

5.5 Determining Which Latches are Set

The getlLatch() method is used to determine which latches are set. The base module will respond with all of the latches that
are active. The other modules will just respond with whether or not the latch is currently active.

5.6 Reading the Latched Data

The getCounts() of the MseModule , getCounts() and getPositions() of the MseEndatModule and MseTtIModule classes,
getPositions() of the Mse1VppModule and MselvdtModule classes, getVoltage(), getCurrent(), getValues(), and getScaled-
Values() of the MseAnalogModule class, getlO of the MseloModule class, and getOutput of the MsePneumaticModule are
used to read the latched data after a trigger is set. Reading the latched data will clear the latch. The base module must be
read first or have its latch cleared before reading from other modules.

5.7 Clearing aTrigger Manually

The setLatch() method is used to reset the desired trigger.

HEIDENHAIN MSElibrary 235

Debouncing Latency

aul 19661] 9y} 3noqy

Trigger line

236

Overview

6.1 Overview

The MSE 1000 modules utilize UDP for communication to a client. A client will send a UDP packet to a specific module, over
the 10/100 Ethernet connection, and receive a response. The Ethernet connection is located on the base module and the
packet is sent to all of the other modules in the chain via the module input and output pins that connect the modules.

Client $:|

17231 46.200:27016

1

Ethemet

UDP datagram

Ethemet
|-
Power Supply Module a UDP datagram Base EnDat Module @ UDP datagram dX EnDat Module @
17231 461027015 @ 1723146.11:77015 172314612:77015
Outpuf Pins Input Pins OutpufPins Input Pins

The above diagram shows a module chain that consists of a power supply, Base EnDat, and 8X EnDat module. The IP ad-
dress and port for each module as well as the client is shown.

Each module has an Ethernet chip that will receive a packet as long as the IP address and socket are a match with the values
in the packet. A module will perform the request based on the command in the packet and then send a response back to the
client. An example would be if the client (IP address 172.31.46.200, port 27016) sends a UDP_GET_COUNTS message to the
base EnDat module (IP address 172.31.46.11, port 27015). The base EnDat module would copy the count data into a message
and then send the message back to the client.

6.2 Effects on Throughput

Throughput can be affected by pre-conditions, module conditions, and post-conditions.
Pre-conditions:

Latching

e The software and debouncing latency of the latching affects the throughput. See the Trigger line on page 233 for
more information.

e The latch must be cleared before reading the latched values or else the value will immediately latch again. This will
not take extra time if the base module reads latched values before reading from the other modules because reading
latched values will clear the latch. If you do not need values from the base module then the latch can simply be
cleared.

Module conditions:

e The send/receive transactions take different amounts of time based on the type of module.
The time it takes to read a count/value from the EnDat, TTL, 1 Vpp, LVDT, /O, Pneumatic, or Analog module
electronics.

e The time it takes to perform diagnostics (see the Diagnostic modes section).
The location of the module in the chain.

238 Module Networking and Throughput

Post-conditions:

e The setNetworkDelay method that is supplied by the MSElibrary defaults to 0 ms and is performed after a send/
receive transaction has completed.
This delay can be set to a number of milliseconds specific to a client’s needs. An example is setting the delay to 4 ms
in order to read only live data for all channels on a single LVDT module with minimal oversampling.

Operating system context switching

e You must not give up priority unless throughput speeds less than the system'’s time slice, or quantum, are
acceptable. A typical delay of 16.66 ms will occur if you give up priority after a packet is received.

e A setNetworkDelay of greater than 16 ms will give up priority. A value less than or equal to 16 ms will use a busy
loop in order to not give up priority in order to simplify the end user development.

Post processing of the received data

e |t can take negligible time to store the data to a buffer or container and utilize it later.
e \Writing the data to a file or performing complex algorithms can be done as soon as the data arrives, but this will
cost time depending on the process used.

Timeout

e UDP is not guaranteed. As a result, a sent packet may not get a response. If this occurs, then a delay will be
incurred based on the value set with the setUdpTimeout method. The timeout should be set back to the default
when done with throughput sensitive procedures since there are other commands that take much longer to
complete, such as changing the IP address.

e Retries can be done manually or the setUdpNumRetries method can be used to do them automatically.

6.3 Throughput Test Results

Setup

Diagnostics disabled

No network delay

Keeping priority

Negligible post processing

Populated channels

Non-base modules are all located as the second module in the chain

Live Data
Average Send/ Live Data Throughput
Receive Time Data Throughput Throughput (channels/
Module Channels (ms) (packets/second) (packets/second) second)
Base EnDat 4 0.917 1082 400 1600
(747499-01)
4X EnDat 4 0.965 1028 400 1600
(747503-01)
8X EnDat 8 1.224 890 185 1480
(747504-01)
Base 1Vpp 4 0.906 1092 639 2556
(747500-01)
4X 1Vpp 4 0.919 1076 529 2116
(747505-01)
8X 1Vpp 8 1.028 962 527 4216
(747506-01)
Base TTL 4 0.863 1144 Same 4576
(747511-01)
4XTTL 4 0.845 1170 Same 4680
(747512-01)
8XTTL 8 0.906 1092 Same 8736
(747513-01)
Analog 2 1.31 756 N/A N/A
(747509-01)
Pneumatic 1 0.753 1310 N/A N/A
(747508-01)
I/O 8 0.751 1313 N/A N/A
(747507-01)

HEIDENHAIN MSElibrary 239

Throughput Test Results

Data Live Data Live Data
Throughput Throughput Throughput
Average Send/ (packets/ (packets/ (channels/

Module Channels ReceiveTime second) second) second) Oversampling
LVDT 8 1.247 794 180 1440 Minimal
(747514-01)
LVDT 8 2.35 423 105 840 Medium
(747514-01)
LVDT 8 4.551 219 54 432 Full
(747514-01)

Average Send/Receive Time

e Each module has its count, voltage, etc., read 10,000 times in succession and the average send/receive time is
obtained.
This process is repeated 10 times to show repeatability.
The results of the throughput test are shown in the table.

e This is just the average, the send/receive time may be faster or slower based on many factors.

Latching Throughput Test Results

Data Throughput (packets/second)

This is the number of packets that were able to be sent in a second.

e This may have stale data and only refers to the maximum throughput that can be obtained per second.

e This throughput information is useful if multiple modules are in the chain since the data will not be stale after cycling
through all modules.

Live Data Throughput (packets/second)

e Requesting data very fast, at the rate shown in ‘Average Send/Receive Time', may be returning the same data as the
previous request(s). This is considered stale data. It takes time for the internal electronics to store the new values of
an encoder, sensor, etc. and for the data to then be retrieved.

e The data in the table is the live data which is obtained by storing the results of the packet into a container and post-
processing them to determine how many packets a second can be obtained without duplicates. The encoder, sensor,
etc. is moved while the readings take place in order to insure that live readings can be obtained.

Live Data Throughput (channels/second)
e This is equal to (Live Data Throughput (packets/second) * Channels).
Oversampling

e Oversampling is utilized exclusively on the LVDT modules in order to filter out noise.
e More oversampling takes a lot of time and is useful when you do not need the throughput.

6.4 Latching ThroughputTest Results

Setup

1Vpp or EnDat base module

e Signal generator attached to the first footswitch of the base module and set to create a TTL square wave at 400 Hz
(trigger once every 2.5 ms).
e The debouncing of the footswitch in the base module was set to 0 ms.

TTL base module,

e Signal generator attached to the first footswitch of the base module and set to create a TTL square wave at 1 kHz
(trigger once every ms).

e A 4xTTL module with a constantly rotating encoder was used to obtain count values.

e The base module latch line is cleared after each read of the count values of the 4x TTL module.

e The 4x TTL module has it's count values read 10,000 times in succession and the number of duplicate readings is
obtained. This process is repeated 10 times to show repeatability. As soon as there are no duplicates, the delay used
between reading one count and the next is considered the maximum throughput for latched data.

240 Module Networking and Throughput

Results

1Vpp and EnDat base modules

Successfully polled the connected TTL module once every 5 ms for new values, using a 5 ms delay after obtaining the
latched values.

TTL base module

Successfully polled the connected TTL module once every 3 ms for new values, using a 3 ms delay after obtaining the
latched values.

6.5 Propagation Delay Test Results

Setup

Diagnostics disabled

No network delay

Keeping priority

Negligible post processing

Populated channels

A 4x EnDat module is moved to different positions in the chain

The module has it's count read 10,000 times in succession and the average send/receive time is obtained
This process is repeated 10 times to show repeatability

Propagation Delay Test Results

Results

There is a cumulative delay between approximately 0.01 and 0.05 ms that should be expected for each module in the chain.
The cumulative 0.05 ms delay will be used in the examples to take care of worst case scenarios.

Example:

If there is a 4x EnDat module connected to the base module, it will take the average send/receive time for a 4x EnDat,
0.965 ms plus approximately 0.05 ms for the propagation delay, for a response to be received. This would be a total of ap-
proximately 1.015 ms. It would take 1.065 ms if there is one module between the base module and the 4x EnDat module.
It would take 1.115 ms if there are two modules between the base module and the 4x EnDat module.

6.6 Example Chain Configurations

e Throughput for an entire chain is dependent on the number of modules connected.
e Throughput for a small chain is bottlenecked by the slowest module.

Large Chain

If there are 10 non-power supply modules connected to a chain, it will take at least the send/receive time plus the propaga-
tion delays in order to read from them all before a new group of readings can be obtained. The ‘live data’ delay can be ignored
since the data will always be live by the time the module is read from again.

Small Chain

If there is a chain of only 2 non-power supply modules, a base EnDat module and an LVDT module, it will take at least the
time it takes for live data to be available on the LVDT, which is approximately 5.55 ms for minimal oversampling, for each
reading.

Live and Latching with a Base EnDat

A chain with a base EnDat module, 4x TTL, and 8x TTL modules would have the following throughput:
e Live throughput would be 0.917 ms (base EnDat) + 0.845 ms (4x TTL) + 0.906 (8x TTL) + 0.05 ms (4x TTL propagation
delay) + 0.1 ms (8x TTL propagation delay) = 2.818 ms to read the entire chain.
e Latching throughput would be 0.917 ms (base EnDat) + 0.845 ms (4xTTL) + 0.906 (8x TTL) + 0.05 ms (4xTTL
propagation delay) + 0.1 ms (8x TTL propagation delay) = 2.818 ms to read the entire chain + 2.182 ms (since we need
a total of 5 ms before the values can be read again based on the latching test results) = 5 ms.

A chain with a base EnDat module, 4xTTL, and 8x TTL, 4x 1Vpp, 8x 1Vpp, and LVDT modules would have the following
throughput:
¢ Live throughput would be 0.917 ms (base EnDat) + 0.845 ms (4x TTL) + 0.906 (8x TTL) + 0.919 (4x 1Vpp) + 1.028 (8x
1Vpp) + 1.247 (LVDT) + 0.05 ms (4x TTL propagation delay) + 0.1 ms (8x TTL propagation delay) + 0.15 ms (4x 1Vpp
propagation delay) + 0.2 ms (8x 1Vpp propagation delay) + 0.25 ms (LVDT propagation delay) = 6.612 ms to read the
entire chain.
e Latching throughput would be the same since 6.612 ms exceeds the time needed for the next latch to be seen.

HEIDENHAIN MSElibrary 241

242 Module Networking and Throughput

Power supply modules

7.1 Power supply modules

The power supply modules are used to supply power to each module connected to its right. The current drawn from modules
to the right of the power supply is taken from the power supply. Power supplies do not draw current from modules to their
left; this allows a new power supply to be placed in the module chain in order to supply power for the next group of modules.

7.2 EnDat modules

The EnDat modules can connect up to 4 or up to 8 channels with HEIDENHAIN EnDat encoders. EnDat encoders have non-
volatile memory that allow them to store absolute position without the need for referencing as well as encoder information
such as resolution, signal period, and more. EnDat encoders are considered gauge, linear, or rotary. Gauge and linear are
treated the same in the library and firmware and are enumerated simply to help the user differentiate between the two.

7.3 1Vpp modules

The 1Vpp modules can connect up to 4 or up to 8 channels with HEIDENHAIN 1Vpp encoders. HEIDENHAIN 1Vpp encoders
do not have non-volatile memory that allow them to store absolute position and therefore need to be manually referenced

on each power up of the module if the encoder offers reference marks and the user wants to utilize absolute positioning. The
1Vpp modules can perform referencing for linear and rotary encoders. The encoder information such as device type, signal
period, and line count must be configured each time an object is instantiated by the MSElibrary. 1Vpp encoders are consid-
ered gauge, linear, or rotary.

HEIDENHAIN 1Vpp modules use the encoders signal period in conjunction with the quadrature signal and internal electronics
to compute the resolution of a linear encoder. The line count in conjunction with the quadrature signal and internal electronics
is used to compute the resolution of rotary encoders.

74 TTL modules

The TTL modules can connect up to 4 or up to 8 channels with HEIDENHAIN TTL encoders. HEIDENHAIN TTL encoders do
not have non-volatile memory that allow them to store absolute position and therefore need to be manually referenced on
each power up of the module if the encoder offers reference marks and the user wants to utilize absolute positioning. The
TTL modules can perform referencing for linear encoders only. The encoder information such as device type, signal period,
and line count must be configured each time an object is instantiated by the MSElibrary. The interpolation of the TTL encod-
ers must be configured for the TTL encoders. TTL encoders are considered gauge, linear, or rotary.

HEIDENHAIN TTL modules use the encoders signal period in conjunction with the quadrature signal and interpolation value to
compute the resolution of a linear encoder. The line count in conjunction with the quadrature signal and interpolation value is
used to compute the resolution of rotary encoders.

75 LVDT modules

The LVDT modules can connect up to 8 channels with Solatron/Tesa compatible, Mahr compatible, or Marposs compatible
LVDT sensors depending on the module. The LVDT modules each utilize an excitation frequency and excitation voltage to
source the LVDT sensors that are connected. The excitation frequency and voltage are stored in non-volatile memory in the
module and therefore only need to be configured each time different sensors are added since the optimal frequency and volt-
age is dependent on the sensor itself. The gain of each sensor must be configured at least once and is stored in non-volatile
memory in the module. The resolution of the sensor is not saved in non-volatile memory and must be configured each time
the LVDT module is instantiated. The resolution must be calibrated at least once and should be calibrated as often as required
by the user. The LVDT modules have added latency due to the subsequent electronics. Refer to the LVDT_OVERSAMPLING_
CHOICES enumeration on page 49 for timing information.

7.6 Analog module

The Analog modules can connect up to 2 channels with 4-20 mA or +/- 10V analog sensors. The raw current or voltage value
of the attached sensor can be retrieved, or the library can be configured to apply a resolution and offset to the value. The
resolution and offset need to be configured each time the module is instantiated. The raw value utilizes a running average of
the last 100 value and can be modified if this is too much.

7.7 1/0 modules

The 1/O modules can connect up to 4 inputs and 4 outputs. There is no need for software configuration.

7.8 Pneumatic module

The pneumatic module has a single output that is used to enable or disable a solenoid. Enabling the solenoid will allow air to
pass through the module. There is no need for configuration.

246 Module descriptions

Overview

8.1 Overview

The MSE 1000 consists of Endat, 1Vpp, TTL, LVDT, Analog, I/0, Pneumatic, and Power Supply modules. Some of the operat-
ing principles are common to all modules; others are specific to the type of module.

Examples of the operating principles can be obtained in the example code sections later in the document or in the examples
code supplied with the installation of the MSElibrary.

8.2 Initialization

The modules communicate over Ethernet using the UDP protocol. Each module has its own IP address and needs to be
initialized after it has been instantiated.

Initialization of the modules does the following:

e Creates a UDP socket for communicating with the module

e Sends a UDP_OPEN command to the module at the specified IP address and receives a
MSE1000ConnectResponse response
Sets the module in asynchronous mode if requested
Fills in the ModuleData information

e Sets the module communication as initialized. If this has not been completed, calls into the module will fail with a
return code of RESPONSE_COMM_NOT_INITIALIZED.

The LVDT module has additional configuration of the excitation voltage and excitation frequency used for all of the sensors.
The excitation voltage and frequency is stored in non-volatile memory in the module and needs to be configured on initial use
whenever the types of sensors are changed. The setExcitationFrequency and setExcitationVoltage C++ methods, and the
MselLvdtModuleSetExcitationFrequency and MselLvdtModuleSetExcitationVoltage C functions are used for setting the excita-
tion frequency and voltage.

C++ Initialization

The Mselnterface class allows for ease in initializing by offering the createChain and addModule methods. These methods are
only available for C++ developers and perform the instantiation of the classes as well as the initialization.

Instantiating an object in C++ refers to creating an instance of the desired class in order to start initializing and/or accessing
its methods.

The example “Creating a Chain via Broadcasting” on page 269 shows how to initialize using createChain.
The example "“Creating a Chain Manually” on page 270 shows how to initialize using addModule.

All instantiated modules can use the initializeModule C++ method in order to communicate to a module instead of creating a
chain.

Non-C++ Initialization

Non-C++ developers must create their own module objects by instantiating the desired classes and using the initialization
methods for each module.

The C calls will wrap the instantiation of the object in the create calls which make the pointer to the object accessible
through the return parameter. Refer to “Mse1VppModuleCreate” on page 128. Non-C++ can utilize the C calls to work with
all of the functionality in the library.

The C calls for simply instantiating and then initializing are:

Module Instantiation Initialization

1Vpp Mse1VppModuleCreate Mse1VppModulelnitialize
Analog MseAnalogModuleCreate MseAnalogModulelnitialize
EnDat MseEndatModuleCreate MseEndatModulelnitialize

1/O MseloModuleCreate MseloModulelnitialize

LVDT MselLvdtModuleCreate MseLvdtModulelnitialize
Pneumatic MsePneumaticModuleCreate MsePneumaticModulelnitialize
TTL MseTtIModuleCreate MseTtIModulelnitialize

The example “Creating a Chain via Broadcasting” on page 269 shows how to instantiate and initialize using C functions
without a chain.

248 Operating principles

8.3 Configuring the Channels

Most of the modules have the ability to attach devices to one or more channels. The power supply modules do not have any
channels. The I/O and Pneumatic modules do not need to be configured through software.

1Vpp

The 1Vpp module must set the error compensation, UOM, encoder type, signal period or line count, scaling, device offset,
rotary format, and counting direction.

Refer to “1Vpp methods and functions” starting on page 122 for the methods and functions listed below.

C++ methods:

setErrorCompensation
setUom
setEncoderType
setSignalPeriod
setLineCount
setScaling
setDeviceOffset
setRotaryFormat
setCountingDirection
initAbsolutePosition
isReferencingComplete
getReferencingState

C functions:

Mse1VppModuleSetErrorCompensation
Mse1VppModuleSetUom
Mse1VppModuleSetEncoderType
Mse1VppModuleSetSignalPeriod
Mse1VppModuleSetLineCount
Mse1VppModuleSetScaling
Mse1VppModuleSetDeviceOffset
Mse1VppModuleSetRotaryFormat
Mse1VppModuleSetCountingDirection
Mse1VppModuleStartReferencing

Mse1VppModuleGetReferencingComplete

Mse1VppModuleGetReferencingState

Refer to “Setting the Encoder Information” on page 272 for a channel configuration example.

Refer to “Referencing” on page 257 for information on referencing.

Refer to “Referencing 1Vpp Linear Encoder” on page 276 for a referencing example.

The signal period and reference mark type for many of the HEIDENHAIN 1Vpp encoders is shown in the following table:

Encoder Signal period Reference marks
ST 128x 20 Single

ST 308x 20 Single

LS 388C 20 1000

LS 688C 20 1000

LS 187 20 Single

LS 187C Coded/1000
LS 487 20 Single

LS 487C Coded/1000
LB 382C 40 Coded/2000
LF 183 4 Single

LF 183C Coded/5000
LF 483 4 Single

LF 483C Coded/5000

HEIDENHAIN MSElibrary

249

the Channels

iguring

Conf

the Channels

iguring

Conf

EnDat

The EnDat module only allows for setting the error compensation and UOM. EnDat encoders have non-volatile memory that
allow for detection of all other values.

Refer to “EnDat methods and functions” starting on page 101 for the methods and functions listed below.

C++ methods:

setErrorCompensation
setUom

setScaling
setDeviceOffset
setRotaryFormat

C functions:

MseEndatModuleSetErrorCompensation

MseEndatModuleSetUom
MseEndatModuleSetScaling
MseEndatModuleSetDeviceOffset
MseEndatModuleSetRotaryFormat

Refer to “Setting the Encoder Information” on page 272 for a 1Vpp channel configuration example. The EnDat configuration

is performed in the same manner except that it only utilizes the error compensation and UOM.

TTL

The TTL module must set the error compensation, UOM, encoder type, signal period or line count, interpolation, scaling,

device offset, rotary format, and counting direction.

Refer to “TTL methods and functions” starting on page 191 for the methods and functions listed below.

C++ methods:

setChannelPresence
setErrorCompensation
setUom
setEncoderType
setSignalPeriod
setLineCount
setScaling
setDeviceOffset
setRotaryFormat
setCountingDirection

C functions:

250

MseTtIModuleSetChannelPresence
MseTtIModuleSetErrorCompensation
MseTtIModuleSetUom
MseTtIModuleSetEncoderType
MseTtIModuleSetSignalPeriod
MseTtIModuleSetLineCount
MseTtIModuleSetScaling
MseTtIModuleSetDeviceOffset
MseTtIModuleSetRotaryFormat
MseTtIModuleSetCountingDirection

Operating principles

The signal period and reference mark type for many of the HEIDENHAIN TTL encoders is shown in the following table:
Encoder Resolution Signal period Interpol. factor Reference marks
LS 177/477 1um 20 pm 5-fold single
0.5 um 20 um 10-fold single
0.25 um 20 um 20-fold single
LS 177C/477C 1 um 20 pm 5-fold coded/1000
0.5 um 20 pm 10-fold coded/1000
0.25 um 20 pm 20-fold coded/1000
LS 328C/628C 5um 20 ym n/a coded/1000
LS 378C 1 um 20 ym 5-fold coded/1000
0.5 um 20 um 10-fold coded/1000
0.25 pm 20 um 20-fold coded/1000
LVDT

The LVDT module must set the channel presence, sensor gain, resolution, device offset, scaling, and oversampling.

Refer to “LVDT methods and functions” starting on page 158 for the methods and functions listed below.

C++ methods:

setChannelPresence
setSensorGain
setResolution
setScaling
setDeviceOffset
setOversampling

C functions:

MselLvdtModuleSetChannelPresence
MselLvdtModuleSetSensorGain
MseLvdtModuleSetResolution
MselvdtModuleSetScaling
MselLvdtModuleSetDeviceOffset
MselvdtModuleSetOversampling

The LVDT sensors have the ability to teach the sensor gain. This is useful for getting a gain with 80% usage of the total
voltage range of the electronics. Too much gain will cause the sensor to become unreliable. Too little gain will cause lower
resolution. Calling the teachSensorGain method will start the teach. Polling the getTeachSensorGainFinished can be used
to determine when the gain teach has completed. You should hold the sensor at the minimum or maximum traversal while
teaching the gain because it uses this location to determine if the sensor is close to the total voltage range of the ADC.

Refer to “LVDT methods and functions” starting on page 158 for the methods and functions listed below.

C++ methods:

teachSensorGain
getTeachSensorGainFinished

C functions:

HEIDENHAIN MSElibrary

MselLvdtModuleTeachSensorGain
MselvdtModuleTeachSensorGainFinished

251

the Channels

iguring

Conf

the Channels

iguring

Conf

Analog
The Analog module must set the resolution , offset, scaling, and device offset.
Refer to “Analog methods and functions” starting on page 176 for the methods and functions listed below.

C++ methods:

e setResolution
setOffset
computeResolutionAndOffset
setScaling
setDeviceOffset
setNumSamples

C functions:

e MseAnalogModuleSetResolution
MseAnalogModuleSetOffset
MseAnalogModuleComputeResolutionAndOffset
MseAnalogModuleSetScaling
MseAnalogModuleSetDeviceOffset
MseAnalogModuleSetNumSamples

The Analog module utilizes the getScaledValues method in order to get a value that is converted from voltage or current to
the desired type. The setResolution, setOffset, and computeResolution are used for this purpose. The setScaling and setDe-
viceOffset methods are used to scale the resulting value and then apply a device offset. The device offset is used mainly for
mastering and is made available to the Analog module through a base class.

The computeResolutionAndOffset is a convenient method for creating the resolution and offset that will be applied to the
voltage or current in order to map the values from the device to user units. An example is a temperature sensor that will give
a reading of -40 degrees Celsius, at the -10V reading of the sensor, to 100 degrees Celsius, at the 10V reading of the sensor.
The user could compute the resolution and offset manually and then enter them, or could call computeResolutionAndOffset
as follows:

double computedResolution = 0.0;
double computedOffset = 0.0;
computeResolutionAndOffset(0, &computedResolution , &computedOffset, -40, 100, -10, 10);

The user could correct for a linear error in the computed values by calling setScaling with a multiplier that would scale the
values the desired amount.

The user could calibrate the 0 degrees by setting the temperature to be measured to a known 0 degrees and calling

getScaledValues to see what the reading of the sensor is. The user could then call setDeviceOffset with the difference be-
tween the reading and 0; if the reading is 2, then the user would call setDeviceOffset(-2).

252 Operating principles

8.4 Channel Operations

The 1Vpp, EnDat, TTL, LVDT, and Analog modules can read information about the devices attached to the channel. The I/O
modules can read channel inputs and set outputs. The Pneumatic module can read and set its output used for controlling the
solenoid valve.

1Vpp

The 1Vpp latest or latched position of all channels can be retrieved as counts or in user units. The counts are a representa-
tion of the number of interpolated crossings of the signal periods on the encoder that have been passed. The position in user
units is the counts multiplied by the resolution and the error compensation value.

Refer to “1Vpp methods and functions” starting on page 122 for the methods and functions listed below.

C++ methods:
e getCounts
e getPositions
e getResolution

C functions:
e Msel1VppModuleGetCounts
e Msel1VppModuleGetPositions
e Msel1VppModuleGetResolution

Refer to “Setting the Encoder Information” on page 272 for reading the counts and positions from a 1Vpp module.

EnDat

The Endat latest or latched position of all channels can be retrieved as counts or in user units. The counts are a representa-
tion of the number of interpolated crossings of the signal periods on the encoder that have been passed. The position in user
units is the counts multiplied by the resolution and the error compensation value.

The EnDat rotary encoders return the current revolution with the getPostions method. The total number of distinguishable
revolutions available to the encoder can be retrieved separately.

Refer to “EnDat methods and functions” starting on page 101 for the methods and functions listed below.

C++ methods:
e getCounts
e getPositions
e getResolution
e getDistinguishableRevolutions

C functions:
e MseEndatModuleGetCounts
e MseEndatModuleGetPositions
e MseEndatModuleGetResolution
e MseEndatModuleGetDistinguishableRevolutions

Refer to “Latching” on page 274 for reading the positions from an EnDat module.

TTL

The TTL latest or latched position of all channels can be retrieved as counts or in user units. The counts are a representation
of the number of interpolated crossings of the signal periods on the encoder that have been passed. The position in user
units is the counts multiplied by the resolution and the error compensation value.

Refer to “TTL methods and functions” starting on page 191 for the methods and functions listed below.

C++ methods:
e getCounts
e getPositions
e getResolution.

C functions:
¢ MseTtIModuleGetCounts
e MseTtIModuleGetPositions
e MseTtIModuleGetResolution

HEIDENHAIN MSElibrary 253

Channel Operations

Channel Operations

LvDT

The LVDT latest or latched position of all channels can be retrieved as voltage or in user units. The voltage is a representa-
tion of the position of the sensor in relation to its NULL, or center, point. The position is calculated as described in the LVDT
module’s getPositions method.

Refer to “LVDT methods and functions” starting on page 158 for the methods and functions listed below.

C++ methods:
e getVoltage
e getPositions
e getResolution

C functions:
e MselLvdtModuleGetVoltage
e MselLvdtModuleGetPositions
e MselLvdtModuleGetResolution

Analog

The Analog latest or latched position of all channels can be retrieved as voltage, current or in user units. The position is calcu-
lated as described in the Analog module’s getPositions method, and the Configuring the Channels section on page 249.

Refer to “Analog methods and functions” starting on page 176 for the methods and functions listed below.

C++ methods.

e getVoltage
getCurrent
getValues
getScaledValues
getOffset
getResolution
getScaling
getDeviceOffset

C functions:

¢ MseAnalogModuleGetVoltage
MseAnalogModuleGetCurrent
MseAnalogModuleGetValues
MseAnalogModuleGetScaledValues
MseAnalogModuleGetOffset
MseAnalogModuleGetResolution
MseAnalogModuleGetScaling
MseAnalogModuleGetDeviceOffset

254 Operating principles

1/0

The I/O latest or latched input and output channel values can be retrieved. The input and output value that are retrieved are
each single characters that can be masked to determine which bit is set. Individual latest bit values can be retrieved as well.
The outputs can be set individually or from the set bits of a single character.

Refer to “1/O methods and functions” starting on page 144 for the methods and functions listed below.

C++ methods:

e getlO
getlnputs
getOutputs
setOutput
setOutputs

C functions

MseloModuleGetlO
MseloModuleGetlnputs
MseloModuleGetOutputs
MseloModuleSetOutput
MseloModuleSetOutputs

Pneumatic

The Pneumatic latest or latched output channel value can be retrieved. The output value that is retrieved is a single character
that can be used to determine if the output is set. The output can be set as well.

Refer to “Pneumatic methods and functions” starting on page 152 for the methods and functions listed below.

C++ methods:
e getOutput
e setOutput

C functions:
e MsePneumaticModuleGetOutput
e MsePneumaticModuleSetOutput

HEIDENHAIN MSElibrary 255

Channel Operations

i
(2]
fher}
(1}
-

g’ 8.5 Latching

Latching is used to accept a command in the base module that will cause the hardware trigger line to be set for all modules.
The setting of the trigger line will allow all of the modules to store data in a very close timeframe which can be used by a
client for tolerance or other functionality. The modules each store a single value for each channel no matter how many latch
lines are set. The modules will be able to store a new value once the latches are all cleared in the base module followed by
the remaining modules. Power supplies do not latch any data and do not need to perform any of the following functionality.

Latching consists of the following process:

The base module waits for a command in order to activate the trigger line that is described in “Trigger line” on page
233.

The command for activating the trigger is one of three software latch commands that are sent via the MSElibrary or
one of the two footswitch latch requests that are inputs on the base module serial port.

The command used for activating the software latch is setLatch in C++. The LATCH_OPTIONS enumeration value of
LATCH_COUNT_SET must be called. The setlLatch command with a value of LATCH_COUNT_SET can only be used for
activating a latch on the base module.

The commands used for activating the software latch are MseEndatModuleSetLatch, Mse1VppModuleSetLatch, and
MseTtIModuleSetLatch in C.

Once the trigger line is set, all of the modules will store the most recent count, position, voltage, current, or I/O value
into memory.

The latched position can be read using the COUNT_REQUEST_OPTION enumeration value of COUNT_REQUEST_
LATCHED when getting the counts, position, voltage, current, or I/O values shown in “Channel Operations” on page
253.

The latch can be cleared on each module by reading the latched position or by calling the setlLatch method in C++.
The LATCH_OPTIONS enumeration value of LATCH_COUNT_RESET must be called. The clearing of the latch must be
done on the base module first or else the modules will immediately latch their values again since the trigger line is still
active.

The commands used for manually clearing the software latch are MseEndatModuleSetlLatch,
Mse1VppModuleSetLatch, MseTtIModuleSetLatch, MselLvdtModuleClearLatch, MseAnalogModuleClearlLatch,
MseloModuleClearLatch, and MsePneumaticModuleClearLatch in C.

The footswitch is available asynchronously or can be polled to determine if it has been set. The asynchronous communication,
is described on page 261.

Polling for whether any of the latches are set is done through the getLatch method in C++. The base module will indicate
which latch is set. Non-base modules will just indicate whether the trigger line caused a latch to occur.

Polling for whether any of the latches are set is done through the MseEndatModuleGetLatches, Mse1VppModuleGetLatches,
MseTtIModuleGetLatches, MseAnalogModuleGetlLatch, MselLvdtModuleGetLatch, MseloModuleGetLatch, and MsePneu-
maticModuleGetlLatch functions in C.

256

Operating principles

8.6 Referencing

Some of the 1Vpp and TTL encoders utilize reference marks to obtain an absolute position on the scale. The encoder must
be moved across at least one mark for encoders that have a single reference mark and across at least two for encoders that
have coded referencing. The spacing between reference marks is dependent on the encoder and based on the signal period
or line count of the encoder as well as the type of reference mark. The referencing process is performed in the module and
is started, monitored, verified, and stopped through the MSElibrary. Referencing must be done each time the module is
powered on.

The type of referencing for an encoder, interpolation (for TTL encoders), signal period, and line count can be obtained from
the encoder manual or from the 1Vpp and TTL tables listed in “Configuring the Channels” on page 249.

Referencing is the following process:

e Configure the encoder and set the referencing type using the functions described in “Configuring the Channels” on
page 249.

e The command used to start referencing in the module is initAbsolutePosition for a 1Vpp encoder or initReferencing for
aTTL encoder in C++.

e The command used to start referencing in the module is Mse1VppModuleStartReferencing for a 1Vpp encoder or
MseTtIModuleStartReferencing for aTTL encoder in C.

e The encoder can now be moved so that the reference mark(s) are crossed.

e The command used to poll the module to determine when referencing is complete is isReferencingComplete for both
1Vpp and TTL encoders in C++.

e The commands used to poll the module to determine when referencing is complete are
Mse1VppModuleGetReferencingComplete for 1Vpp and MseTtIModuleGetReferencingComplete for TTL encoders in
C.

e The command used to determine if referencing was successful is getReferencingState for both 1Vpp and TTL
encoders in C++.

e The commands used to determine if referencing was successful are Mse1VppModuleGetReferencingState for 1Vpp
and MseTtIModuleGetReferencingState for TTL encoders in C.

When referencing is complete and was verified as successful, the count and position requests will now be absolute.

The referencing complete message is available through the asynchronous communication described later in the document
and can be used instead of polling to determine if the referencing is complete.

HEIDENHAIN MSElibrary 257

Referencing

Module Errors and Warnings

8.7 Module Errors and Warnings

The modules have errors and warnings described in “System integrity” on page 227.

A subset of the warnings and errors consisting of the INTEGRITY_ENUMS enumeration can be obtained through library calls.
The errors and warnings obtained through the library call can be cleared. If the error or warning is still resident, it will be set
again immediately.

The command used to get the integrity errors is getintegrity in C++.

The commands used to get whether there is an integrity error or to get the integrity errors are Mse1VppModuleGetModu-
leErrorState, Mse1VppModuleGetModuleErrors, MseAnalogModuleGetModuleErrorState, MseAnalogModuleGetModu-
leErrors, MseEndatModuleGetModuleErrorState, MseEndatModuleGetModuleErrors, MseloModuleGetModuleErrorState,
MseloModuleGetModuleErrors, MselLvdtModuleGetModuleErrorState, MselLvdtModuleGetModuleErrors, MsePneumatic-
ModuleGetModuleErrorState, MsePneumaticModuleGetModuleErrors, MseTtIModuleGetModuleErrorState, and MseTtl-
ModuleGetModuleErrors in C.

The getintegrity method has a field that contains the ranges of each integrity error. This is used in order to retrieve the toler
ance values that need to be reached before each integrity error is triggered. The NUM_INTEGRITY_RANGES constant is the
number of integrity ranges returned. The INTEGRITY_FRAM_ERROR and INTEGRITY_FRAM_RECOVERED enumerations do
not utilize a tolerance and so do not have a range entry.

The command used to get the actual values of the power supply current, power supply 24V supply, non-power supply 5V
supply, 3.3V supply, and CPU temperature is getAdcValues in C++.

The command used to get the actual values of the power supply current, power supply 24 V supply, non-power supply 5V
supply, 3.3V supply, and CPU temperature are Mse1VppModuleGetAdcValues, MseAnalogModuleGetAdcValues, MseEn-
datModuleGetAdcValues, MseloModuleGetAdcValues, MselvdtModuleGetAdcValues, MsePneumaticModuleGetAdcValues,
and MseTtlIModuleGetAdcValues in C.

The module errors can be cleared with the clearIntegrityErrors method in C++.
The module errors and channel errors together can be cleared with the clearAllErrors method in C++.

The module errors and channel errors together can be cleared with the Mse1VppModuleClearErrors, MseAnalogModule-
ClearErrors, MseEndatModuleClearErrors, MseloModuleClearErrors, Msel.vdtModuleClearErrors, MsePneumaticModule-
ClearErrors, and MseTtIModuleClearErrors in C.

Module errors are cleared automatically when the MSElibrary initializes a module.

258 Operating principles

8.8 Channel Errors and Warnings

The EnDat encoder has the ability to report warnings and error and to keep track of its operating efficiency with Function
Reserves.

The TTL encoder only monitors for a single error.

Errors and warnings are cleared automatically when the MSElibrary initializes a module.

EnDat

The ENDAT_ERRORS and ENDAT_WARNINGS enumerations describe the additional errors and warnings. Refer to “Enumer-
ations” starting on page 29.

The errors and warnings for the EnDat encoders can be read with getErrors and getWarnings C++ method.

The errors and warnings for the EnDat encoders can be read with MseEndatModuleGetChannelErrorState, MseEndatMod-
uleGetEndatErrors, MseEndatModuleGetChannelWarningState, and MseEndatModuleGetEndatWarnings C functions.

The EnDat encoder errors and warnings can be cleared with the clearErrorsAndWarnings C++ method.
The module errors and EnDat encoder errors and warnings can be cleared together with the clearAllErrors method in C++.

The module errors and channel errors together can be cleared with the MseEndatModuleClearErrors function in C.

1Vpp

The counter errors are used to determine if the microcontroller that is reading the counts is getting an error. The counter er-
rors are described with the COUNTER_STATUS enumeration. Refer to “Enumerations” starting on page 29.

The counter errors can be obtained with the getChannelStatus C++ method.

The counter errors can be obtained with the Mse1VppModuleGetChannelStatus C function.

The counter error can be cleared with the clearErrorsAndWarnings C++ method.

The module errors and counter errors can be cleared together with the clearAllErrors method in C++.

The module errors and counter errors together can be cleared with the Mse1VppModuleClearErrors function in C.

TTL

The TTL module reports only whether there is a COUNTER_STATUS_EDGE_DISTANCE_ERROR. Refer to “"Enumerations”
starting on page 29.

The counter error can be obtained with the getChannelStatus C++ method.

The counter errors can be obtained with the MseTtIModuleGetChannelErrorState C function.

The counter error can be cleared with the clearErrorsAndWarnings C++ method.

The module errors and counter errors can be cleared together with the clearAllErrors method in C++.

The module errors and counter errors together can be cleared with the MseTtIModuleClearErrors function in C.

HEIDENHAIN MSElibrary 259

Channel Errors and Warnings

Diagnostics

8.9 Diagnostics

The common diagnostics are described in “Diagnostic modes” on page 231.

The diagnostics default to DIAG_MODE_FULL when the modules power up. The DIAG_MODE_OPTIONS enumeration offers
additional choices. Refer to “Enumerations” starting on page 29.

The diagnostics mode can be changed with the enableDiags C++ method.

The diagnostics mode can be changed with the Mse1VppModuleEnableDiags, MseAnalogModuleEnableDiags, MseEn-
datModuleEnableDiags, MseloModuleEnableDiags, MselLvdtModuleEnableDiags, MsePneumaticModuleEnableDiags and
MseTtIModuleEnableDiags C methods.

The EnDat, 1Vpp and LVDT modules each have additional diagnostics that can be monitored.
EnDat

The EnDat module reports EnDat function reserves. The function reserve report how well the absolute tracking, incremental
tracking, and position value calculation are being performed. The type of function reserve available is dependent on the en-
coder. If a function reserve is not available, it will be reported. If the encoder is normally running below 25% of a supported
function reserve, it may be in need of servicing. The function reserves can be disabled using the enableDiags method.

The function reserves can be obtained with the getDiag C++ method.

The function reserves can be obtained with the MseEndatModuleGetDiags C function.

1Vpp

The 1Vpp module can return the A and B encoder amplitude values for the user to check that the amplitude is close to 1 Vpp,
that they are within 90 degrees phase of each other, and for plotting a Lissajou figure of the signals.

The 1Vpp analog diagnostic is enabled with the enableAnalogDiag C++ method.
The 1Vpp analog diagnostic is enabled with the Mse1VppModuleEnableAnalogDiag C function.
The 1Vpp analog diagnostic values are read with the getDiag C++ method.

The 1Vpp analog diagnostic values are read with the Mse1VppModuleGetAnalogDiag C function.

LVvDT

The LVDT diagnostics allow for a single channel to be monitored rather than all 8. This is useful if a lot of samples need to be
gathered of an individual sensor since it will be much faster.

The LVDT diagnostic is enabled with the setDiagnosticsEnabled C++ method.
The LVDT diagnostic is enabled with the MselLvdtModuleSetDiagnosticsEnabled C function.

260 Operating principles

8.10 Asynchronous Communication

Asynchronous communication allows for the client to wait on a socket for messages from the modules.

Asynchronous communication works for:
e Obtaining the IP addresses, netmasks, ports, MAC addresses, DHCP setting, and serial number for module that have
been powered on but have not been connected yet.
¢ Receiving footswitch press notifications
e Receiving module and channel error notifications
e Receiving reference complete notifications

Asynchronous communication is turned on during the initialization of a module based on a parameter passed in by the client.
Asynchronous communication can also be enabled or disabled with the setAsyncMode C++ method. There are no C func-
tions for enabling asynchronous communication; the modules must be initialized with the required setting.

The client must bind on a UDP socket and wait on the asynchronous port in order to get asynchronous messages. Once the
message is received, it can be decoded and/or acted upon.

The module will continue to send the asynchronous message once every 5 seconds until it is acknowledged.
Refer to “Asynchronous methods"” on page 211 for more information.

The commands to decode the asynchronous message are:

The getAsyncMsgType C++ method is used to determine the type of message received

The MseModuleGetAsyncMsgType C function is used to determine the type of message received

The decodeConnectMsg C++ method is used to get the information from a UDP_CONNECT message.

The MseModuleGetAsyncMsglpAddress, MseModuleGetAsyncMsgPort, MseModuleGetAsyncMsgDhcp,

MseModuleGetAsyncMsgMacAddress, MseModuleGetAsyncMsgNetmask, and

MseModuleGetAsyncMsgSerialNumber C functions are used to get the information from a UDP_CONNECT message.

The decodelatchMsg C++ method is used to get the information from a UDP_LATCH message.

The MseModuleGetAsyncMsgLatch C function is used to get the information from a UDP_LATCH message.

The decodeChannelStatusMsg C++ method is used to get the information from a UDP_CHANNEL_STATUS message.

The MseModuleGetAsyncMsgChannelStatus C function is used to get the information from a UDP_CHANNEL_

STATUS message.

e The UDP_INTEGRITY message does not need to be decoded. The actual errors should be read after this is received to
determine what error occurred.

The UDP_CONNECT message will stop being sent when an initialize command is sent to the module.
The UDP_LATCH message will stop being sent when the module’s latch is cleared as described in “Latching” on page 256.

The UDP_CHANNEL_STATUS message with a channel status of 1 (warning or error) will stop being sent when the EnDat,
1Vpp, or TTL error is read as described in “Channel Errors and Warnings” on page 259.

The UDP_CHANNEL_STATUS message with a channel status of 2 (referencing complete) will stop being sent when the 1Vpp
or TTL referencing is acknowledged. The acknowledge is sent with the acknowledgeAbsolutePosition C++ method for 1Vpp
and acknowledgeReferencing C++ method for TTL. The acknowledge is sent with the Mse1VppModuleAcknowledgeAbso-
lutePosition C function for 1Vpp and MseTtIModuleAcknowledgeReferenicng C function for TTL.

The UDP_INTEGRITY message will stop being sent when the module errors are read as described in “Module Errors and
Warnings"” on page 258.

The asynchronous port defaults to 27300. The MSE1000_ASYNC_PORT constant can be used access the default asynchro-
nous port value. The asynchronous port can be changed for each module with the setAsyncPort C++ method. The asyn-
chronous port can be changed for each module with the MseModuleSetAsyncPort C function. Changing the asynchronous
port will set the value in the module non-volatile memory. All modules can be restored to factory defaults which will set the
asynchronous port back to 27300.

HEIDENHAIN MSElibrary 261

Asynchronous Communication

262 Operating principles

Overview

9.1 Overview

The C++ example section contains basic explanations of the C++ examples that are available in the Visual Studio project
packaged with the MSElibrary as well as some hand picked examples embedded directly in this manual.

9.2 MselLibraryCppExamples Visual Studio Solution

The C++ examples are located in the directory described in section 2.2 Installation Instruction.

Open the MSElibraryCppExamples.sin solution from within Visual Studio 2010 to access the MSElibraryCppExamples project.
The MSElibraryCppExamples project’'s main file is MseExamples.cpp.

The C++ example is a command line program that allows for the following command line calls:

Broadcasting, CreateChain, Setlp, Program, Latching, SetLatch, GetlLatches, 10, Pneumatic, EnDat, 1Vpp, Analog, LVDT, TTL,
Referencing, ReferenceRotary, ReferenceTTL, TeachGain, Discovery, Subscribe, and ReadConfig. The user can run these
commands from the command line or by entering the command line arguments in the ‘Debugging’ screen of the MSElibrary-
CppExamples properties page from inside Visual Studio. The IP address of the workstation is assumed to be 172.31.46.200
for these examples and must be changed to the correct IP address by the user. the IP addresses used to communicate with
the modules in these examples are chosen since they match a module chain used to create the tests, the user must change
the IP address to match the modules in their system. The C equivalent functions for the C++ library calls can be determined
by looking at the ‘Library Software' and ‘Operating Principles’ sections of this document.

The MseExamples.cpp file contains the main() function. The developer can use this file to access all of the examples. For
example, if the developer wants to see how to perform a broadcast:

» Find the “Broadcasting” text in the argv string compare section of the main() function.

» Open the MseNetworking.cpp file since that is the object that is constructed in the example.

» Go to the createChain method in the MseNetworking.cpp file since that method is called next. Notice that the cre-
ateChain method is called with the desired parameters, the return of the method is checked for errors, and the error
code of the return can be decoded to get a textual representation.

» Go to the testChain method in the MseNetworking.cpp file since that method is called next. The module type, module
data, counts, number of channels, and input and output values of I/O modules are all read.

Broadcasting Example

The Broadcasting example will display all of the IP addresses for the modules in the chain. These addresses will be useful for
utilizing the other examples.

» Type “Broadcasting 172.31.46.2007 as the parameters to MseExamples.exe, in order to obtain all of the module infor-
mation plus some data from the channels for all the modules in the chain.

The IP address values from the above command for use in the following examples are:
172.31.46.101 Power Supply
172.31.46.102 Base EnDat
172.31.46.103 4x TTL
172.31.46.104 LVDT
172.31.46.105 8x EnDat
172.31.46.106 4x 1Vpp
172.31.46.107 Power Supply
172.31.46.108 Analog
172.31.46.109 I/O
172.31.46.110 Pneumatic

264 C++ examples

EnDat Example

» Type "EnDat 172.31.46.102" as the parameters to MseExamples.exe, in order to obtain the following:
Module information

Encoder information for each channel

Count values for each channel

Position values for each channel

Position values after modifying the UOM, error compensation, scaling, and device offset
Encoder error information for each channel

Encoder warning information for each channel

Module integrity information

Latch state

Module integrity information after clearing errors

Refer to the “EnDat” section of the main() function to find the methods that contain the example code. The EnDat example

instantiates a single MseEndatModule and initializes it. The setEncoderInfo call in the MseEndatTesting.cpp file contains ex-
ample calls for setting up the error compensation, scaling, device offset, and uom. There is no need to configure the channel
presence, encoder type, signal period, or line count since the module auto-detects the type of encoder attached and EnDat

encoders store information internally.

TTL Example

» Type “TTL 172.31.46.103" as the parameters to MseExamples.exe, in order to obtain the following:
e Resolution for each channel
e Position values for each channel

Refer to the "TTL" section of the main() function to find the methods that contain the example code. The 1Vpp example
instantiates a single MseTtIModule and initializes it. The getPositions call in the MseTtITesting.cpp file contains example calls
for setting up the channel presence, referencing, error compensation, scaling, device offset, encoder type, signal period,
uom, and counting direction.

1Vpp Example

» Type “1Vpp 172.31.46.106" as the parameters to MseExamples.exe, in order to obtain the following:
e Signal type for a specific channel
e Resolution for a specific channel
e Position values for a specific channel

Refer to the “1Vpp" section of the main() function to find the methods that contain the example code. The 1Vpp example
instantiates a single Mse1VppModule and initializes it. The showLinearEncoderData call in the Mse1VppTesting.cpp file
contains example calls for setting up the error compensation, scaling, device offset, encoder type, signal period, uom, and
counting direction. There is no need to configure the channel presence since the module auto-detects whether an encoder is
attached, and whether it is a 1 Vpp or 11 uApp, when it is first turned on.

LVDT Example

» Type "LVDT 172.31.46.104" as the parameters to MseExamples.exe, in order to obtain the following:
e Counts for all channels
e \/oltage representation of the counts for all channels
e Positions for all channels
e Excitation voltage and frequency of the module

Refer to the "LVDT" section of the main() function to find the methods that contain the example code. The LVDT example
instantiates a single MselvdtModule and initializes it. The getPositions call in the MseLvdtTesting.cpp file contains example
calls for setting up the channel presence, resolution, sensor gain, scaling, device offset, and oversampling.

HEIDENHAIN MSElibrary 265

MselLibraryCppExamples Visual Studio Solution

MseLibraryCppExamples Visual Studio Solution

Analog Example

» Type "Analog 172.31.46.108" as the parameters to MseExamples.exe, in order to obtain the following:
e \/oltage and current for both channels
e \/oltage that is manually scaled for the first channel
e \/oltage that is scaled using the computeResolutionAndOffset method for the first channel

Refer to the "Analog” section of the main() function to find the methods that contain the example code. The Analog example
instantiates a single MseAnalogModule and initializes it. The getValues call in the MseAnalogTesting.cpp file contains ex-
ample calls for setting the number of samples used for internal averaging, scaling, resolution, offset, and automatic computa-
tion of the resolution and offset.

1/0 Example

> Type "10 172.31.46.109 1" as the parameters to MseExamples.exe, in order to obtain the following:
e The input and output values for all channels

Refer to the 10" section of the main() function to find the methods that contain the example code. The I/O example instanti-
ates a single MseloModule and initializes it. The setlo and getlo calls in the MseloTesting.cpp file contains example calls for
setting I/O output and reading the current state of the input and outputs.

Pneumatic Example

» Type "Pneumatic 172.31.46.110 1" as the parameters to MseExamples.exe, in order to obtain the following:
e The output value

Refer to the “Pneumatic” section of the main() function to find the methods that contain the example code. The Pneumatic
example instantiates a single MsePneumaticModule and initializes it. The setOutput and getOutput calls in the MsePneumat-
icTesting.cpp file contains example calls for setting the output and reading the current state of the output.

Latching Example

» Type “Setlatch 172.31.46.200 17 as the parameters to MseExamples.exe, or utilize a footswitch in order to set the
latch on the base module.

» Type "GetlLatches 172.31.46.200 1 as the parameters to MseExamples.exe, in order to read the latch states of all
modules, latched data of all modules, and clear the latch.

» Type “Latching 172.31.46.200" as the parameters to MseExamples.exe, in order to set the latch, read the latch states
of all modules, latched data of all modules, and clear the latch.

"o

Refer to the “Latching’, “SetlLatch’ and “GetlLatches"” sections of the main() function to find the methods that contain the
example code. The Latching, SetLatch and GetLatches commands will perform a broadcast in order to determine all of the
modules in the chain.

Setting IP Address Example
» Type “Setlp 172.31.46.200 0 172.31.46.122 255.255.255.0" as the parameters to MseExamples.exe, in order to set the
|P address of the first module in the chain, the power supply, to a new IP address and netmask.

Refer to the “Setlp” section of the main() function to find the methods that contain the example code. The Setlp command
will perform a broadcast in order to determine all of the modules in the chain, show the current IP settings of the desired
module, and set the IP of the desired module. The showModulelnfo and setlp calls in the MseNetworking.cpp file contains
example calls for displaying and setting the IR

Referencing Example

» Type "Referencing 172.31.46.106 0’ as the parameters to MseExamples.exe, in order to enable single reference mark
referencing for a 1Vpp encoder with a signal period of 20.

Refer to the "Referencing” section of the main() function to find the methods that contain the example code. The requestRef-
erencing method in the Mse1VppTesting.cpp file will start the single referencing with a signal period of 20. The waitForRefer
encing method in the Mse1VppTesting.cpp file contains example calls for waiting until the referencing has been completed.

266 C++ examples

Referencing a 1Vpp Coded Rotary Encoder Example

» Type “Reference1VppCodedRotary 172.31.46.106 Q' as the parameters to MseExamples.exe, in order to enable and
perform coded reference mark referencing for a ROD 780C 1Vpp encoder with a line count of 36000. See the table of
encoders in the “Configuring the Channels” section of this manual for signal period, line count, and distance codings
for HEIDENHAIN encoders.

Refer to the “Reference1VppCodedRotary” section of the main() function to find the methods that contain the example code.
The requestRotaryReferencing method in the Mse1VppTesting.cpp file will start the angular coded referencing with a line
count of 36000. The waitForReferencing method in the Mse1VppTesting.cpp file contains example calls for waiting until the
referencing has been completed. The state of the referencing will change and be shown as each reference mark is crossed.

Referencing aTTL Coded Encoder Example

» Type "ReferenceTTLCoded 172.31.46.103 0’ as the parameters to MseExamples.exe, in order to enable and perform
coded reference mark referencing for an LS 378C TTL encoder with a signal period of 20 microns and interpolation of
20X. The type of referencing is REFERENCE_MARK_CODED_1000. See the table of encoders in the “Configuring the
Channels” section of this manual for signal period, line count, interpolation, and distance codings for HEIDENHAIN
encoders.

Refer to the "ReferenceTTLCoded"” section of the main() function to find the methods that contain the example code. The
requestReferencing method in the MseTtlTesting.cpp file will start the coded referencing with a signal period of 20 microns.
The waitForReferencing method in the MseTtITesting.cpp file contains example calls for waiting until the referencing has
been completed. The state of the referencing will change and be shown as each reference mark is crossed.

Module Discovery Example

» Type "Discovery 172.31.46.200" as the parameters to MseExamples.exe, in order to create a thread and wait for
asynchronous data from the modules. Power cycle the modules after this command is issued. The modules will each
broadcast their connection information to the MSE1000_ASYNC_PORT every 10 seconds. The modules will stop
broadcasting once connected via module initialization or the setAsyncMode method is called with 0 as the useAsync
parameter.

Refer to the "Discovery” section of the main() function to find the methods that contain the example code. The startThread
method in the AsyncMessageHandler.cpp file will start the thread, wait on the socket, and decode the message.

Module Subscribe Example

» Type “Subscribe 172.31.46.200 172.31.46.102 74749901 as the parameters to MseExamples.exe, in order to create
a connection to a module based on the type of module and it's IP address. The module will be put into asynchronous
mode, and a thread will be created to receive the asynchronous messages. Latching messages, errors and warnings,
and referencing complete messages can be obtained asynchronously this way. This is useful if client code does not
want to poll for this information. The messages will continue to be sent until acknowledged. The latch is acknowledged
by reading the data or clearing the latch. The referencing complete is acknowledged by sending the acknowledgeAbso-
lutePosition method for 1Vpp or acknowledgeReferencing method for TTL. The getWarnings, getErrors, and getChan-
nelStatus methods will acknowledge the warning and errors.

Refer to the "Subscribe” section of the main() function to find the methods that contain the example code. The startThread
method in the AsyncMessageHandler.cpp file will start the thread, wait on the socket, and decode the message.

Programming MSEfirmware Example

» Type "“Program 172.31.46.110 c:\Firmware\MSEfirmware.dat’ as the parameters to MseExamples.exe, in order to cre-
ate a connection to a module based on the IP address and then program the firmware.

Refer to the “Program” section of the main() function to find the methods that contain the example code. The Pro-
gramMse 1000 method in the MseProgramTesting.cpp file will initialize the module and program it.

HEIDENHAIN MSElibrary 267

MselLibraryCppExamples Visual Studio Solution

MseLibraryCppExamples Visual Studio Solution

ModuleConfig Read and Write Example

» Type “"ReadConfig C:\Users\\PublicWHEIDENHAINWMSEsetup\Config\ModuleConfig.xml” in order to read the values
in the ModuleConfig.xml file and to show how to change the module and channel labels.

Refer to the “ReadConfig” section of the main() function to find the methods that contain the example code. The MseCon-
figReaderTesting.cpp file contains the examples for reading. The MseConfigWriterTesting.cpp file contains the examples for
writing.

LVDT Teach Gain Example

» Type "TeachGain 172.31.46.104" as the parameters to MseExamples.exe, in order to obtain the following:
e The computed gain value for the first channel

Refer to the “TeachGain” section of the main() function to find the methods that contain the example code. The TeachGain ex-
ample instantiates a single MseLvdtModule and initializes it. The teachGain method in the MselLvdtTesting.cpp file contains
example calls for setting the channel presence, teaching the gain, and checking for and getting the result of the teach.

268 C++ examples

9.3 Initializing the module chain

The initialization of the MSE is performed dynamically via broadcasting or manually by passing the required parameters.
Initialization is achieved by:

¢ |Instantiating the Mselnterface class.
e (Calling the createChain() method for broadcasting or addModule() method for each module in the chain.

Initialization will create the UDP connection needed for communication to the module as well as gather all the module spe-
cific information and device information for EnDat modules.

The information returned from the broadcasting can be saved and used by client business logic to store all the needed infor
mation so that future broadcasts are not needed.

There is no need to deallocate memory for objects created by the library. The destructors of the classes will delete the dy-
namically created objects so that they are deallocated when the Mselnterface goes out of scope.

Creating a Chain via Broadcasting

The MSE chain is created via broadcasting with the createChain() method.
The createChain() method will do the following:

e Remove all connections that are currently in the chain.
e Send a broadcast message to the MSE requesting the IP address and port.
e Each module in the MSE chain will respond to a broadcast message by sending a response with its IP address and
port.
e The information needed to communicate with each module is available once the responses are received but the
order of the chain is not currently known.
e Read up to 64 responses from the MSE and stop waiting for responses after a timeout.
e |Initialize each device that was found from the broadcast and add them to the MSE chain.
e |nitialization consists of setting up the UDP communication, requesting the module information from the module,
and requesting the device information for each channel if the module is an EnDat module.
e The asynchronous communication is not needed unless a separate thread is going to be used to watch for foot
switch latches, 1Vpp reference complete, or errors.
e QOrganize the chain.
e Utilizes the modules input and output connections, via the setRight() and getLeft() functions, to determine the
order of the chain.
e Reorganizes the MSE chain to represent the real physical locations of the modules.

Example
To initialize and create a chain of modules via broadcasting:

» Include the Mselnterface.h header and instantiate the Mselnterface class.

#include “MselInterface.h”
#include <iostream> // for sending results to the console
MseInterface mse;

» Create the MSE chain by calling createChain() with the IP address, base port to use for the client PC (this is what the
MSE devices will use for responses), asynchronous messages set to false, and the netmask for use by the broadcast-
ing.

MseResults retVal = mse.createChain(“172.31.46.3”7,27016,false, “255.255.255.07);

if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;

HEIDENHAIN MSElibrary 269

in

the module cha

itializing

In

in

the module cha

itializing

In

Creating a Chain Manually

The MSE chain is created manually with the addModule() method. This is the preferred method once all of the module IP ad-
dresses are known because it allows for the chain to be created faster, in the correct order from the start, and also allows for
asynchronous communication from the modules.

The addModule() function will do the following:

Return an error code of RESPONSE_MODULE_MISMATCH if the module requested does not match the module type
in the firmware.
Create a new module of the type requested.
Initialize the module.

Add the module to the MSE chain.

Example
To create a chain of modules manually:

4

270

Include the Mselnterface.h header and instantiate the Mselnterface class.

#include

“MselInterface.h”
#include <iostream> // for sending results to the console
#include <sstream> // for streaming object data

MseInterface mse;

Create the MSE chain by calling addModule() for each module in the chain.

MseResults retVal = mse.addModule (MODULE ID ENDAT BASE,

if (RESPONSE OK != retVal.getCode())

{

std::stringstream ss;

ss << “Error: “ << MseResults:: showRespCode (retVal.getCode())

cout

std::

}

retvVal
retvVal
retvVal
retvVal

<< ss;
cout << “handle error” << std::endl;

= mse

mse.
.addModule

mse

mse.

.addModule

MODULE_ID IO IP40,
MODULE_ID 1VPP 4X,
MODULE_ID ENDAT 4X,
MODULE ID ENDAT 8X,

addModule

addModule

“172.31.46.5",false);
“172.31.46.6",false);

“172.31.46.7",false
“172.31.46.8",false

)
)

“172.31.46.4",false);

’

’

C++ examples

9.4 Getting counts

This example shows how to get the counts of the measurement devices. The getCounts will return the requested number of
channels worth of counts (unless the numChannels is > the number of channels available in that module).

Example
To initialize and read count data:

4

Include the Mselnterface.h header and instantiate the Mselnterface class.

#include “Mselnterface.h”
#include <iostream> // for sending results to the console
MseInterface mse;

Create the MSE chain by calling createChain() with the IP address, base port to use for the client PC (this is what the
MSE devices will use for responses), asynchronous messages set to false, and the netmask for use by the broadcast-

ing.

MseResults retVal = mse.createChain(“172.31.46.3”7,27016,false, “255.255.255.0");
if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;

Get a reference to the desired module, request the counts, iterate through the channels and display the count value.

MseResults retVal;
// Allocate enough memory for the maximum number of channels
unsigned long counts[MAX CHANNELS PER MODULE];

// Get the reference to the first module (indexed from 0)
MseModule* module = mse.getModule (0);

1f (0 == module)

std::cout << “handle error” << std::endl;

// Request counts

retVal = module->getCounts (counts, module->getNumChannels (), COUNT REQUEST LATEST);
if (RESPONSE OK != retVal.getCode())

std::cout << “handle error” << std::endl;

// Display the resulting counts
for (unsigned int i = 0; i < module->getNumChannels()); ++1i)
{

cout << “Channel[™ << i1 << “] = ™ << counts[1i] << “\n”;

HEIDENHAIN MSElibrary 271

Getting counts

Setting the Encoder Information

9.5 Setting the Encoder Information

The encoder information is used for EnDat and 1Vpp modules. The encoder information is set after the module chain is cre-
ated. The EnDat devices will default to millimeters for linear encoders and degrees for rotary encoders.

The 1Vpp encoders have additional information that needs to be set in order to get a position. 1Vpp rotary encoders require
the line count to be set and 1Vpp linear encoders require the signal period.

Example
To set the encoder info:

» Include the headers and instantiate the Mselnterface class.

#include “MselInterface.h”
MseInterface mse;

» Create the MSE chain by calling createChain() with the IP address and base port to use for the client PC (this is what
the MSE devices will use for responses).

MseResults retVal = mse.createChain(“172.31.46.37,27016, false, “255.255.255.0");
if(RESPONSEioK != retVal.getCode())
std::cout << “handle error” << std::endl;

» Get a pointer to the 1Vpp module that needs to be configured and set the encoder information.

MselVppModule* module = mse.getlVppModule (0) ;
if (0 == module)
std::cout << “handle error” << std::endl;

module->setUom (UOM_INCHES,O0) ;
module->setErrorCompensation(1.0,0);
module->setEncoderType (ENCODER TYPE GAUGE,0) ;
module->setSignalPeriod(20,0);
module->setCountingDirection (true,0) ;

module->setUom (UOM DEGREES, 1) ;
module->setErrorCompensation(1.0,1);
module->setEncoderType (ENCODER TYPE ROTARY,1);
module->setLineCount (4096,1) ;
module->setCountingDirection (true, 1) ;

module->setUom (UOM_MM, 2) ;
module->setErrorCompensation(1.0,2);
module—>setEncoderType(ENCODERfTYPEiLINEAR,Z);
module->setSignalPeriod (20, 2);
module->setCountingDirection (false, 2);

module->setUom (UOM_DEGREES, 3) ;
module->setErrorCompensation(1.0,3);
module->setEncoderType (ENCODER TYPE ROTARY, 3) ;
module->setLineCount (18000, 3) ;
module->setCountingDirection (true, 3);

272 C++ examples

» Read the counts. The counts will be raw values.

// Allocate enough memory for the maximum number of channels
unsigned long counts[MAX CHANNELS PER MODULE];

retVal = module->getCounts (counts, module->getNumChannels (), COUNT REQUEST LATEST) ;
if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;

// Display the resulting counts
for (unsigned int i = 0; i < module->getNumChannels()); ++1i)

{

cout << “Channel[“ << i1 << “] = ™ << counts[i] << “\n”;

» Read the position. The position will be based on the uom, line count, signal period, counting direction, and error com-
pensation passed in.

double pos[MAX CHANNELS PER MODULE] ;

retVal = module->getPositions (pos, module->getNumChannels (), COUNT REQUEST LATEST) ;
if (RESPONSE OK != retVal.getCode())

std::cout << “handle error” << std::endl;

for (unsigned int i = 0; i < module->getNumChannels(); ++1i)

{

cout << “Channel[® << 1 << “] = ™ << pos[i] << ™\n”;

HEIDENHAIN MSElibrary 273

Setting the Encoder Information

Latch

F=.” 9.6 Latching

Latching is used to capture position and I/O data for all modules for a specific moment in time. Latching occurs by telling the
base module to start the latch via the MSElibrary or from a footswitch attached to the serial port of the base module. Latch-
ing is done after the module chain is created.

The MSElibrary utilizes the setLatch(LATCH_COUNT_RESET, LATCH_CHOICE_ALL) method for clearing a latch and the
setlLatch(LATCH_COUNT_SET, LATCH_CHOICE_SOFTWARE_1) method for causing the latch to occur. The getPositions()
method with a option parameter of COUNT_REQUEST_LATCHED is used to get the latched data from a module. The stored
latched position in a module will not be updated again unless the latch is cleared.

Example
To set latching:

4

274

Include the headers and instantiate the Mselnterface class.

#include “MselInterface.h”
MseInterface mse;

Create the MSE chain by calling createChain() with the IP address and base port to use for the client PC. The MSE
devices will use this for responses.

MseResults retVal = mse.createChain(“172.31.46.3”7,27016,false, “255.255.255.0");
if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;

Loop through the chain and clear the latches on all modules.

for (unsigned int moduleIndex = 0; moduleIndex < mse.getNumModules (); ++moduleIndex)

{
MseModule* module = mse.getModule (modulelIndex) ;
if (module)
{
retVal = module->setLatch (LATCH COUNT RESET, LATCH CHOICE ALL);
if (RESPONSE OK != retVal.getCode())
{
std::cout << “Could not clear the latch in the module”;
return false;

}
Set the latch on the base module.

MseModule* baseModule = mse.getModule (1) ;
if (baseModule)
{
retVal = baseModule->setLatch (LATCH COUNT SET, LATCH CHOICE SOFTWARE 1);
if (RESPONSE OK != retVal.getCode())
{
std::cout << “Could not set the latch in the base module”;
return false;

}
Loop through the chain and get the latched data from each 1Vpp and EnDat module

MODULE ID moduleType;

unsigned long hwId = 0;

unsigned char hwRev = 0;

unsigned short numAxes;

double pos[MAX CHANNELS PER MODULE];

long currentRevolution[MAX CHANNELS PER MODULE];

for (unsigned int moduleIndex = 0; moduleIndex < mse.getNumModules(); ++modulelIndex)

{
if (0 == mse.getModule (modulelIndex))

{
std::cout << “Module returned NULL” << std::endl;
continue;

C++ examples

retVal = mse.getModule (moduleIndex)->getModuleType (&moduleType, &hwId, &hwRev,

&numAxes) ;

if (RESPONSE OK != retVal.getCode())

{

std::cout << “Could not get the module type “ << std::endl;
continue;

}

switch (moduleType)

{

case MODULE ID ENDAT BASE:
case MODULE_ID ENDAT 8X:
case MODULE_ID ENDAT 4X:

{

MseEndatModule* module = mse.getEndatModule (modulelIndex) ;
1if (0 == module)

{

std::cout << “Module “ << moduleIndex << “ is NULL “ << std::endl;
continue;

retVal = module->getPositions (pos,currentRevolution,module-
>getNumChannels (),

COUNT REQUEST LATCHED) ;

if (RESPONSE OK != retVal.getCode())

{

std::cout << “Could not get positions from EnDat module” << std::endl;

continue;
}
for (unsigned int i = 0; i < module->getNumChannels(); ++i)
{
std::cout << “Channel[“ << 1 << “] = “ << std::setiosflags

}

break;

(std::ios: :fixed)
<< std::setprecision(4) << pos[i] << std::endl;

case MODULE ID 1VPP BASE:
case MODULE ID 1VPP 8X:
case MODULE ID 1VPP 4X:

{

MselVppModule* module = mse.getlVppModule (moduleIndex) ;
1if (0 == module)

{

std::cout << “Module “ << moduleIndex << “ is NULL “ << std::endl;
continue;

retVal = module->getPositions (pos,module->getNumChannels (),

COUNT REQUEST LATCHED) ;

if (RESPONSE OK != retVal.getCode())

{

std::cout << “Could not get positions from 1Vpp module << std::endl;
continue;

for (unsigned int i = 0; i < module->getNumChannels(); ++i)

{

}

break;

default:

break;

HEIDENHAIN MSElibrary

std::cout << “Channel[“ << 1 << “] = “ << std::setiosflags
(std::ios: :fixed)
<< std::setprecision(4) << pos[i] << std::endl;

275

Latching

Referencing 1Vpp Linear Encoder

9.7 Referencing 1Vpp Linear Encoder

The referencing procedure is used for 1Vpp linear and rotary encoders. This example is for a HEIDENHAIN LS 388C linear
encoder with a signal period of 20 micrometers and 1000 signal period spacing. Referencing the encoder is the process
used to obtain an absolute position on the encoder’s scale. The user must initialize the module, set the encoder data, start
the referencing, move the encoder across the reference marks, wait for the referencing to complete, and then verify that the
referencing was successful. Polling the referencing complete can be replaced with monitoring the asynchronous thread for

a UDP_CHANNEL_STATUS message followed by decoding the asynchronous message with the decodeChannelStatusMsg
method and then sending an acknowledgeAbsolutePosition method to the module.

Example
To reference the encoder:

4

276

Include the headers and instantiate the Mselnterface class.

#include “MselInterface.h”

MseInterface mse;

Create the MSE chain by calling createChain() with the IP address and base port to use
for the client PC (this is what the MSE devices will use for responses).

MseResults retVal = mse.createChain(“172.31.46.3”7,27016,false, “255.255.255.0");
if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;

Get a pointer to the 1Vpp module and set the encoder data.

MselVppModule* module = mse.getlVppModule (0) ;
1f (0 == module)
std::cout << “handle error” << std::endl;

module->setUom (UOM_MM, O) ;
module->setErrorCompensation(1.0,0);
module->setEncoderType (ENCODER_TYPE_LINEAR, 0);
module->setSignalPeriod(20,0);
module->setCountingDirection (true,0);

Tell the module to obtain the reference position.
module ->initAbsolutePosition (0, REFERENCE MARK CODED 1000, 20) ;

Poll the module until the reference position has been obtained (the user must move the encoder read head until it
crosses at least 2 reference marks).

bool isReferenced = false;

while (1)

{
retVal = module ->isReferencingComplete (0, &isReferenced);
if (RESPONSE OK != retVal.getCode())
{

std::cout << “Could not check isReferenceComplete: “ <<
MseResults: :showRespCode (retVal.getCode ()) << std::endl;
return false;

}

if (isReferenced)
break;

C++ examples

» \Verify that the referencing has been successful.
REF_MARK STATE refState = REF MARK OFF;

retVal = module ->getReferencingState (0, &refState);

if(RESPONSE_OK T= retVal.getCode ())
{

std::cout << “Could not get the referencing state: “ <<
MseResults: :showRespCode (retVal.getCode()) << std::endl;

return false;

if (refState == REF MARK FINISHED)

std::cout << “The encoder referencing passed” << std::endl;
else

std::cout << “The encoder referencing failed” << std::endl;

HEIDENHAIN MSElibrary

277

Referencing 1Vpp Linear Encoder

9.8 Programming Firmware

The firmware is programmed using the program() method in the MseModule class. The percent complete of the program-
ming can be obtained with the getProgrammingPercentComplete() method. The program method blocks until done, so the
getProgrammingPercentComplete() needs to run in another thread by the client. The percent complete is returned as a
double. The programming can be done by using a module in the MSE chain or by IP address in case there is an initialization
problem with a module in the chain.

Example
To program firmware:

» Include the headers and instantiate the Mselnterface class.

Programming Firmware

#include “MselInterface.h”
MseInterface mse;

» Create the MSE chain by calling createChain() with the IP address and base port to use for the client PC (this is what
the MSE devices will use for responses).

MseResults retVal = mse.createChain(“172.31.46.3”7,27016,false, “255.255.255.0");
if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;

» Get areference to the desired module to program.
MseModule* module = mse.getModule (0);
1f (0 == module)
std::cout << “handle error” << std::endl;

» Program the module with the new firmware.
MseResults retVal;
retVal = module->program (“C:\\Program Files\\MSEsetup\\Firmware\\MSEfirmware.dat”) ;
if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;

To program firmware with IP address:
» Include the headers.

#include “MselInterface.h”

» Create a new module for programming (because the chain status is unknown) and remove it from the UDP server
when done (in the destructor of the MseModule).

MseModule* module = new MseModule();
1f (0 == module)
std::cout << “handle error” << std::endl;

» Initialize the module with the initializeFirmware function of the MseModule class.
MseResults retVal;
retVal = module->initializeFirmware (“172.31.46.1");
if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;
» Program the module with the new firmware.
retVal = module->program (“C:\\Program Files\\MSEsetup\\Firmware\\MSEfirmware.dat”) ;

if (RESPONSE OK != retVal.getCode())
std::cout << “handle error” << std::endl;

278 C++ examples

9.9 MseConfigReader

The MseConfigReader is used to read configuration data that was created by the MSEsetup application. This data can be
very useful when utilizing the MSElibrary as it allows a developer to leverage this data instead of having to create their own
persistant storage.

The MSEsetup application must successfully perform a broadcast before the following example can be utilized.

The examples in this section utilize C++.

Example
To read from the ModuleConfig.xml file:

» Include the header and instantiate the MseConfigReader class.

#include “MseConfigReader.h”
#include “mseDeviceModule.h”
MseConfigReader configReader;

» Call loadXml with the filename of the ModuleConfig.xml file:

MSE_ XML RETURN retVal = MSE XML RETURN OK;
retVal = configReader.loadXml (“C:\\ProgramData\\HEIDENHAIN\\MSEsetup\\config\\
ModuleConfig.xml”) ;
if (retval != MSE XML RETURN OK)
{
std::cout << “Error: “ << MseConfigbase::decodeErrorType (retVal) << std::endl;
return;

}

» Call getElement with the desired tag name, module number, and channel number(getElement is an overloaded func-
tion that can be called with or without the module number or channel number based on the desired tag to retrieve).
The following example retrieves the 1Vpp line count for module 2, channel 2.

MSE XML RETURN retVal = MSE XML RETURN OK;
std::String tempStr;

int moduleNum = 2;

int channelNum = 2;

retvVal = conﬁgReader.getElement(MSE7XML7ELEMENT4LINE7COUNT, tempStr, moduleNum,
channelNum) ;

if (retval != MSE XML RETURN OK)

std::cout << “Error: “ << MseConfigbase::decodeErrorType (retVal) << std::endl;
return;

std::cout << MseConfigBase::decodeElementType (MSE XML ELEMENT LINE COUNT)
<< N = N <KL tempStr << std::endl;

HEIDENHAIN MSElibrary 279

MseConfigReader

1apeaybijuonasin

C++ examples

280

Overview

10.1 Overview

The C example section contains explanations of the C examples that are available in the Visual Studio project packaged with
the MSElibrary as well as an example embedded directly in this manual. Refer to the C++ examples and the OperatingPrin-
ciples section for more information on interacting with the modules and the correct methods and functions to utilize.

10.2 MSElibraryCExamples Visual Basic Solution
The C examples are located in the directory described in the Installation Instruction section on page 24.

Open the MSElibraryCExamples.sin solution from within Visual Studio 2010 to access the MSElibraryCExamples project. The
MSElibraryCExamples project’s main file is main.cpp.

The main function take command line parameters in order to perform the correct examples.

The MSElibraryCExamples.exe is a command line program that allows for the following:
MSElibraryCExamples.exe [MODULE_IP_ADDRESS]

MSElibraryCExamples.exe Broadcasting [CLIENT_IP_ADDRESS]

MSElibraryCExamples.exe Async [CLIENT_IP_ADDRESS]

MSElibraryCExamples.exe ConfigFile [FILE_LOCATION]

MSElibraryCExamples.exe Setlp [MODULE_IP_ADDRESS] [NEW_IP_ADDRESS] [NEW_NETMASK]
MSElibraryCExamples.exe Program [CLIENT_IP_ADDRESS] [TYPE] [FILE]

Module Examples

The MSElibraryCExamples.exe [MODULE_IP_ADDRESS] command will connect to the module at the MODULE_IP_AD-
DRESS, determine it's type, and then perform all the available examples for that module.

Broadcasting Example

The MSElibraryCExamples.exe Broadcasting [CLIENT_IP_ADDRESS] will perform a broadcast and obtain all of the module
information for connecting to the modules in the chain.

Async Example

The MSElibraryCExamples.exe Async [CLIENT_IP_ADDRESS] will create a thread and wait on the asynchronous port for
asynchronous messages from the modules. The example will show the asynchronous connect messages only. The warning,
error, referencing, and latching messages can be monitored in the subscribe example.

Subscribe Example

The MSElibraryCExamples.exe Subscribe [CLIENT_IP_ADDRESS] [MODULE_IP_ADDRESS] will create a thread and wait on
the asynchronous port for asynchronous messages from the specified module. The 1 Vpp and TTL modules will send errors if
a channel is considered populated and there are no encoders connected.

Config File Example

The MSElibraryCExamples.exe ConfigFile [FILE_LOCATION] will read information from the ModuleConfig.xml file. Writing to
the file is also shown and can be enabled by uncommenting the configFileTesting.write() line of code.

Setting the IP Address Example

The MSElibraryCExamples.exe Setlp IMODULE_IP_ADDRESS] [NEW_IP_ADDRESS] INEW_NETMASK] will set the IP ad-
dress of the desired module to the new IP address and netmask passed in.

Programming the Firmware and Bootloader Example

The MSElibraryCExamples.exe Program [CLIENT_IP_ADDRESS] [TYPE] [FILE] will program the module with the MSEfirm-

ware.dat or MSEbootloader.dat file passed in. Make sure to never power off the module while programming the bootloader
or it will become unusable and will have to be sent back to HEIDENHAIN for reprogramming. Failure to program the MSE-

firmware can recover and be programmed again since the module will still have a bootloader loaded. The [TYPE] can be BL

for bootloader or FW for firmware.

282 C examples

10.3 Initialize, Configure, and Get Positions from a 1Vpp Module

The following example will connect to a 1Vpp module, configure the encoder information for the first channel, and get the

encoder position. This example assumes a gauge with a signal period of 20um.

Example

4

Include the headers and instantiate a Mse1VppModule.

#include “MseModuleWrapper.h”
#include “MselVppModuleWrapper.h”
#include <iostream>

#include <iomanip>

#include <sstream>

using namespace std;

char ipAddress([1l6];

MSE RESPONSE CODE respCode;

char respStr[256];

unsigned long counts[MAX CHANNELS PER MODULE];
double pos[MAX CHANNELS PER MODULE];

double resolution = 0.0;

short channelNum = 0;

ENCODER_TYPES_ENUM encoderType = ENCODER_TYPE_NONE;
UOM uom = UOM_UNDEFINED;

short signalPeriod = 0;

// The IP addres of the module to connect with
strcpy (ipAddress, ”172.31.46.17") ;

// Get a pointer to a MselVppModule in order to initialize, configure, and get data
MseModulePtr module = MselVppModuleCreate();
if (!module)

return 0;

// Initialize the module
respCode = MselVppModuleInitialize (module , &ipAddress[0], false);
if (respCode != RESPONSE OK)
{
MseModuleShowRespCode (respStr, respCode) ;

cout << “MselVppModuleInitialize failed: “ << respStr << endl;
MselVppModuleDelete (module) ;
return;

encoderType = ENCODER TYPE LINEAR;
respCode = MselVppModuleSetEncoderType (module, encoderType, channelNum);
if (respCode != RESPONSE OK)
{
MselVppModuleDelete (module) ;
return;

HEIDENHAIN MSElibrary

283

Initialize, Configure, and Get Positions from a 1Vpp Module

Initialize, Configure, and Get Positions from a 1Vpp Module

284

uom = UOM MM;
respCode = MselVppModuleSetUom(module, uom, channelNum) ;
if (respCode != RESPONSE OK)
{
MselVppModuleDelete (module) ;
return;

signalPeriod = 20;
respCode = MselVppModuleSetSignalPeriod (module, signalPeriod, channelNum) ;
if (respCode != RESPONSE OK)
{
MselVppModuleDelete (module) ;
return;

respCode = MselVppModuleGetResolution (module, &resolution, channelNum) ;
if (respCode != RESPONSE OK)
{
MselVppModuleDelete (module) ;
return;
}
cout << “The Resolution for channel “ << channelNum << “ is ™ << std::setiosflags
(std::ios::fixed) << std::setprecision(8) << resolution << endl;

respCode = MselVppModuleGetCounts (module, &counts[0], MAX CHANNELS PER MODULE,
COUNT REQUEST LATEST) ;
if (respCode != RESPONSE OK)
{
MselVppModuleDelete (module) ;
return;
}

cout << “The Counts for channel “ << channelNum << “ are “ << counts[0] << endl;

respCode = MselVppModuleGetPositions (module, &pos([0], MAX CHANNELS PER MODULE,
COUNT REQUEST LATEST) ;
if (respCode != RESPONSE OK)
{
MselVppModuleDelete (module) ;
return;
}

cout << “The Position for channel “ << channelNum << “ is ™ << pos[0] << endl;

// Delete the module when not using it anymore and free up the memory
MselVppModuleDelete (module) ;

C examples

9|npojAl ddA L e w4} SUoINSOd 195 pue ‘aanbljuo) ‘azijeniuj

285

HEIDENHAIN MSElibrary

9|npojA ddA L e w04} Suoilsod 195 pue ‘aanbiyuo) ‘azijeniuj

C examples

286

Overview

11.1 Overview

The Visual Basic examples are located in the directory described in section 2.2 Installation Instruction.

Open the MSETestbed.sIn solution from within Visual Studio 2010 to access the MSETestbed project. The MSETestbed proj-
ect’s main file is MainForm.vb.

The MSElibrary.dll, QtCore4.dll, and QtXml4.dll should be deleted and re-added to the project if they cannot be found or are
incorrect versions.

The following files contain most of the function declarations that are needed for calling into the MSElibrary dll: AnalogMod-
ule.vb, CommonModule.vb, ConfigFileModule.vb, EndatModule.vb, loModule.vb, LvdtModule.vb, OneVppModule.vb, Pneu-
maticModule.vb, and TtIModule.vb. Function declarations that are not provided can be added by the developer based on the
already included declarations and the information provided in this manual.

The Visual Basic example relies on an already existing ModuleConfig.xml file to have been created by the MSEsetup appli-
cation. The MSEsetup application is supplied by HEIDENHAIN as a graphical application to configure the module, store the
configuration into a ModuleConfig.xml file, and perform data capturing of the modules. The example will create a module
chain once the ‘Init’ button is pressed and the ModuleConfig.xml file is chosen. The module chain is visible in the Module
drop down box. The desired test can then be selected from the ‘Tests' dropdown box followed by clicking on ‘Open Test'".

11.2 Module Throughput Test

The Module Throughput test is used to determine how many channels per second can be captured, the number of packets
sent, and the number of dropped packets for an individual module. The results are shown dynamically and can be stored to a
file.

The ModuleThroughputForm.vb file has the code used for the test.
The UDP delay, timeout, and number of retries can all be set to limit the number of dropped packets if necessary.
The diagnostic level can be changed in order to show how it affects the EnDat modules throughput.

The ‘Auto Control Valve’ checkbox will appear if there are any Pneumatic modules is in the chain. Clicking on this check box
will cause the output of the Pneumatic module(s) to be enabled.

11.3 Chain Throughput Test

The Chain Throughput test is used to determine how many channels per second can be captured, the number of packets
sent, and the number of dropped packets for an entire chain. The results are shown dynamically and can be stored to a file.

The ChainThroughputForm.vb file has the code used for the test.
The UDP delay and number of retries can be set to limit the number of dropped packets if necessary.

The ‘Auto Control Valve’ checkbox will appear if there are any Pneumatic modules is in the chain. Clicking on this check box
will cause the output of the Pneumatic module(s) to be enabled.

11.4 Latching Test
The Latching test can be used to show the latch state of all modules.
The LatchingForm.vb file has the code used for the test.

All' 5 of the latches can be set through software. The physical footswitch can be tested by clicking on the ‘Get latch(es)’ but-
ton.

The ‘Clear Latches’ button can be used to clear the latches without reading the positions.
The 'Latched Values’ button can be used to read all of the latched values into the screen.

The ‘Live Values' button can be used to read all of the latest values into the screen. This is useful for testing latching to make
sure that the latched value differs from the live value when a footswitch occurs and the value is read even after the position
has changed.

The ‘Latch and Read’ button will cause a latch to occur and then time how long it takes to read all of the latched values from
the modules.

The ‘Auto Control Valve’ checkbox will appear if there are any Pneumatic modules in the chain. Clicking on this check box will
cause the output of the Pneumatic module(s) to be enabled.

The ‘External Capture’ button is used to capture the latching of the data from the footswitch input. The base module is polled
from a thread as fast as possible checking whether the latch has been set. If it has, then the latched data from each module
is read and saved into a list. The list is saved to a file called Latching.csv when external capturing is stopped. The file can also
be saved to another location and opened using the Save and Open buttons.

288 Visual Basic examples

11.5 Voltage Diagnostics

The voltage diagnostics test is used to read the sensor gain code, read the sensor voltage, set the sensor gain code, get the
excitation voltage, get the excitation frequency, set the excitation voltage, and set the excitation frequency.

The LvdtDiagnosticForm.vb file has the code used for the test.

The drop-down list box allows you to isolate the desired voltage reading to the selected choice. This utilizes the MseLvdt-
ModuleSetDiagnosticsEnabled C function. The selection of ‘All" in the drop down will not show any reading when 'Get
Voltage' is clicked but will instead set the module back to its normal polling routine of reading all populated sensors plus the

excitation voltage.
The ‘Start’ button will allow the voltage value to be read continuously.

HEIDENHAIN MSElibrary 289

Voltage Diagnostics

solpsoubeiq abejjon

Visual Basic examples

290

Overview

12.1 Overview

The Delphi examples are located in the users directory listed in “Installation instructions” on page 24.
» Open the Mse.dproj project from within Delphi XE3. The MSE project’s main file is Main.pas.

The MSElibrary.dll, QtCore4.dll, and QtXml4.dll should be available to the project if they cannot be found or are incorrect ver
sions.
The following files contain some examples of the function declarations that are needed for calling into the MSElibrary dll:

e Msel1VppModule.pas

e MseEndatModule.pas

e MseModule.pas

e MseConfigFile.pas
Function declarations that are not provided can be added by the developer based on the already included declarations and the
information provided in these operating instructions.

The Delphi examples are in the files:
e OneVppExamples.pas
e EndatExamples.pas
e ConfigFileExamples.pas

292 Delphi examples

Introduction

13.1 Introduction

The MSElibrary software package contains pre-made LabVIEW VI wrappers to access all of the functionality within the MSEli-
brary. These wrappers were created with LabVIEW 2012 v120f3 (32-bit) and MSElibrary 2.0.0. An experienced Labview devel-
oper can choose to edit or create the Vl's. To do this refer to the Labview documentation on integrating third party software
into Labview. The included VI's are then used in a sample application to demonstrate using MSElibrary within Labview.

13.2 Installation

The MSElibrary installer installs both pre-configured wrapper VI's and an example application, both are based on MSEli-

brary v2.0.0. The wrapper Vl's are located in the HEIDENHAIN\MSElibrary\LabVIEV\M\Wrappers folder, under which there will
be individual folders grouped by library. Each individual library folder will contain the .Ivlib file and a VI folder. The example
application is located in the HEIDENHAIN\MSElibrary\Examples\LabVIEW folder. This folder contains the LabVIEW project file
(.Ivproj) and a sub-folder containing the necessary VI's. Refer to “Installation instructions” on page 24 for the location of

the \HEIDENHAIN folder on different operating systems.

294 LabVIEW

LabVIEW VI's

13.3 LabVIEW VI's and corresponding MSElibrary functions

MSElibrary1VppWrapperVl.lvlib

MSElibrary Function

Mse1Vpp Module Acknowledge Absolute Position.vi

Mse1VppModuleAcknowledgeAbsolutePosition

Mse1Vpp Module Clear Errors.vi

Mse1VppModuleClearErrors

Mse1Vpp Module Create.vi

Mse1VppModuleCreate

Mse1Vpp Module Delete.vi

Mse1VppModuleDelete

Mse1Vpp Module Enable Analog Diag.vi

Mse1VppModuleEnableAnalogDiag

Mse1Vpp Module Enable Diags.vi

Mse1VppModuleEnableDiags

Mse1Vpp Module Enable Error Checking.vi

Mse1VppModuleEnableErrorChecking

Mse1Vpp Module Get Adc Values.vi

Mse1VppModuleGetAdcValues

Mse1Vpp Module Get Analog Diag.vi

Mse1VppModuleGetAnalogDiag

Mse1Vpp Module Get Channel Error State.vi

Mse1VppModuleGetChannelErrorState

Mse1Vpp Module Get Channel Status.vi

Mse1VppModuleGetChannelStatus

Mse1Vpp Module Get Counting Direction.vi

Mse1VppModuleGetCountingDirection

Mse1Vpp Module Get Counts.vi

Mse1VppModuleGetCounts

Mse1Vpp Module Get Encoder Type.vi

Mse1VppModuleGetEncoderType

Mse1Vpp Module Get Error Compensation.vi

Mse1VppModuleGetErrorCompensation

Mse1Vpp Module Get Latches.vi

Mse1VppModuleGetlLatches

Mse1Vpp Module Get Line Count.vi

Mse1VppModuleGetLineCount

Mse1Vpp Module Get Module Error State.vi

Mse1VppModuleGetModuleErrorState

Mse1Vpp Module Get Module Errors.vi

Mse1VppModuleGetModuleErrors

Mse1Vpp Module Get Num Channels.vi

Mse1VppModuleGetNumChannels

Mse1Vpp Module Get Positions.vi

Mse1VppModuleGetPositions

Mse1Vpp Module Get Referencing Complete.vi

Mse1VppModuleGetReferencingComplete

Mse1Vpp Module Get Referencing State.vi

Mse1VppModuleGetReferencingState

Mse1Vpp Module Get Resolution.vi

Mse1VppModuleGetResolution

Mse1Vpp Module Get Signal Period.vi

Mse1VppModuleGetSignalPeriod

Mse1Vpp Module Get Uom.vi

Mse1VppModuleGetUom

Mse1Vpp Module Initialize.vi

Mse1VppModulelnitialize

Mse1Vpp Module Set Counting Direction.vi

Mse1VppModuleSetCountingDirection

Mse1Vpp Module Set Encoder Type.vi

Mse1VppModuleSetEncoderType

Mse1Vpp Module Set Error Compensation.vi

Mse1VppModuleSetErrorCompensation

Mse1Vpp Module Set Latch Debouncing.vi

Mse1VppModuleSetLatchDebouncing

Mse1Vpp Module Set Latch.vi

Mse1VppModuleSetlLatch

Mse1Vpp Module Set Line Count.vi

Mse1VppModuleSetLineCount

Mse1Vpp Module Set Signal Period.vi

Mse1VppModuleSetSignalPeriod

Mse1Vpp Module Set Uom.vi

Mse1VppModuleSetUom

Mse1Vpp Module Start Referencing.vi

HEIDENHAIN MSElibrary

Mse1VppModuleStartReferencing

295

LabVIEW VI's and corresponding MSElibrary functions

LabVIEW VI's and corresponding MSElibrary functions

MSElibraryAnalogWrapperVLl.Ivlib

LabVIEW VI's

MSElibrary Function

Mse Analog Module Clear Errors.vi

MseAnalogModuleClearErrors

Mse Analog Module Clear Latch.vi

MseAnalogModuleClearLatch

Mse Analog Module Compute Resolution And Offset.
Vi

MseAnalogModuleComputeResolutionAndOffset

Mse Analog Module Create.vi

MseAnalogModuleCreate

Mse Analog Module Delete.vi

MseAnalogModuleDelete

Mse Analog Module Get Adc Values.vi

MseAnalogModuleGetAdcValues

Mse Analog Module Get Current.vi

MseAnalogModuleGetCurrent

Mse Analog Module Get Diag Voltages.vi

MseAnalogModuleGetDiagVoltages

Mse Analog Module Get Latch.vi

MseAnalogModuleGetLatch

Mse Analog Module Get Module Error State.vi

MseAnalogModuleGetModuleErrorState

Mse Analog Module Get Module Errors.vi

MseAnalogModuleGetModuleErrors

Mse Analog Module Get Num Channels.vi

MseAnalogModuleGetNumChannels

Mse Analog Module Get Offset.vi

MseAnalogModuleGetOffset

Mse Analog Module Get Resolution.vi

MseAnalogModuleGetResolution

Mse Analog Module Get Scaled Values.vi

MseAnalogModuleGetScaledValues

Mse Analog Module Get Values.vi

MseAnalogModuleGetValues

Mse Analog Module Get Voltage.vi

MseAnalogModuleGetVoltage

Mse Analog Module Initialize.vi

MseAnalogModulelnitialize

Mse Analog Module Set Num Samples.vi

MseAnalogModuleSetNumSamples

Mse Analog Module Set Offset.vi

MseAnalogModuleSetOffset

Mse Analog Module Set Resolution.vi

MSElibraryConfigFileWrapperViIs.lvlib

LabVIEW VI's

MseAnalogModuleSetResolution

MSElibrary Function

Mse Config File Create.vi

MseConfigFileCreate

Mse Config File Decode Element Type.vi

MseConfigFileDecodeElementType

Mse Config File Decode Error Type.vi

MseConfigFileDecodeErrorType

Mse Config File Delete.vi

MseConfigFileDelete

Mse Config File Get All Elements.vi

MseConfigFileGetAllElements

Mse Config File Get Channel Element.vi

MseConfigFileGetChannelElement

Mse Config File Get Element.vi

MseConfigFileGetElement

Mse Config File Get Filename.vi

MseConfigFileGetFilename

Mse Config File Get Module Element.vi

MseConfigFileGetModuleElement

Mse Config File Get Num Channels.vi

MseConfigFileGetNumChannels

Mse Config File Get Num Modules.vi

MseConfigFileGetNumModules

Mse Config File Get Specific Channel.vi

MseConfigFileGetSpecificChannel

Mse Config File Get Specific Module.vi

MseConfigFileGetSpecificModule

Mse Config File Load Xml.vi

MseConfigFileLoadXml

Mse Config File Reload Xml.vi

MseConfigFileReloadXml

Mse Config File Remove Module.vi

MseConfigFileRemoveModule

Mse Config File Set Channel Element.vi

MseConfigFileSetChannelElement

Mse Config File Set Module Element.vi

MseConfigFileSetModuleElement

Mse Config File Validate Elements.vi

MseConfigFileValidateElements

Mse Config File Write File.vi

MseConfigFileWriteFile

Mse Config File Write New File.vi

296

MseConfigFileWriteNewFile

LabVIEW

MSElibraryEndatWrapperVls.lvlib

LabVIEW VI's

MSElibrary Function

Mse Endat Module Clear Errors.vi

MseEndatModuleClearErrors

Mse Endat Module Create.vi

MseEndatModuleCreate

Mse Endat Module Delete.vi

MseEndatModuleDelete

Mse Endat Module Enable Diags.vi

MseEndatModuleEnableDiags

Mse Endat Module Enable Error Checking.vi

MseEndatModuleEnableErrorChecking

Mse Endat Module Get Adc Values.vi

MseEndatModuleGetAdcValues

Mse Endat Module Get Channel Error State.vi

MseEndatModuleGetChannelErrorState

Mse Endat Module Get Channel Presence.vi

MseEndatModuleGetChannelPresence

Mse Endat Module Get Channel Status.vi

MseEndatModuleGetChannelStatus

Mse Endat Module Get Channel Warning State.vi

MseEndatModuleGetChannelWarningState

Mse Endat Module Get Counting Direction.vi

MseEndatModuleGetCountingDirection

Mse Endat Module Get Counts.vi

MseEndatModuleGetCounts

Mse Endat Module Get Diags.vi

MseEndatModuleGetDiags

Mse Endat Module Get Distinguishable Revolutions.vi

MseEndatModuleGetDistinguishableRevolutions

Mse Endat Module Get Encoder |d.vi

MseEndatModuleGetEncoderld

Mse Endat Module Get Encoder Name.vi

MseEndatModuleGetEncoderName

Mse Endat Module Get Encoder Serial Number.vi

MseEndatModuleGetEncoderSerialNumber

Mse Endat Module Get Encoder Type.vi

MseEndatModuleGetEncoderType

Mse Endat Module Get Endat Errors.vi

MseEndatModuleGetEndatErrors

Mse Endat Module Get Endat Warnings.vi

MseEndatModuleGetEndatWarnings

Mse Endat Module Get Error Compensation.vi

MseEndatModuleGetErrorCompensation

Mse Endat Module Get Latches.vi

MseEndatModuleGetlLatches

Mse Endat Module Get Module Error State.vi

MseEndatModuleGetModuleErrorState

Mse Endat Module Get Module Errors.vi

MseEndatModuleGetModuleErrors

Mse Endat Module Get Num Channels.vi

MseEndatModuleGetNumChannels

Mse Endat Module Get Positions.vi

MseEndatModuleGetPositions

Mse Endat Module Get Resolution.vi

MseEndatModuleGetResolution

Mse Endat Module Get Uom.vi

MseEndatModuleGetUom

Mse Endat Module Initialize.vi

MseEndatModulelnitialize

Mse Endat Module Set Error Compensation.vi

MseEndatModuleSetErrorCompensation

Mse Endat Module Set Latch Debouncing.vi

MseEndatModuleSetLatchDebouncing

Mse Endat Module Set Latch.vi

MSElibraryPneumaticWrapperViIs.lvlib

LabVIEW VI's

MseEndatModuleSetLatch

MSElibrary Function

Mse Pneumatic Module Clear Errors.vi

MsePneumaticModuleClearErrors

Mse Pneumatic Module Clear Latch.vi

MsePneumaticModuleClearLatch

Mse Pneumatic Module Create.vi

MsePneumaticModuleCreate

Mse Pneumatic Module Delete.vi

MsePneumaticModuleDelete

Mse Pneumatic Module Get Adc Values.vi

MsePneumaticModuleGetAdcValues

Mse Pneumatic Module Get Latch.vi

MsePneumaticModuleGetLatch

Mse Pneumatic Module Get Module Error State.vi

MsePneumaticModuleGetModuleErrorState

Mse Pneumatic Module Get Module Errors.vi

MsePneumaticModuleGetModuleErrors

Mse Pneumatic Module Get Num Channels.vi

MsePneumaticModuleGetNumChannels

Mse Pneumatic Module Get Output.vi

MsePneumaticModuleGetOutput

Mse Pneumatic Module Initialize.vi

MsePneumaticModulelnitialize

Mse Pneumatic Module Set Output.vi

HEIDENHAIN MSElibrary

MsePneumaticModuleSetOutput

297

LabVIEW VI's and corresponding MSElibrary functions

MSElibraryloWrapperVis.lvlib

LabVIEW VI's

MSElibrary Function

Mse lo Module Clear Errors.vi

MseloModuleClearErrors

Mse lo Module Clear Latch.vi

MseloModuleClearLatch

Mse lo Module Create.vi

MseloModuleCreate

Mse lo Module Delete.vi

MseloModuleDelete

Mse lo Module Get Adc Values.vi

MseloModuleGetAdcValues

Mse lo Module Get Inputs.vi

MseloModuleGetlnputs

Mse lo Module Get |0.vi

MseloModuleGetlO

Mse lo Module Get Latch.vi

MseloModuleGetLatch

Mse lo Module Get Module Error State.vi

MseloModuleGetModuleErrorState

Mse lo Module Get Module Errors.vi

MseloModuleGetModuleErrors

Mse lo Module Get Num Channels.vi

MseloModuleGetNumChannels

Mse lo Module Get Outputs.vi

MseloModuleGetOutputs

Mse lo Module Initialize.vi

MseloModulelnitialize

Mse lo Module Set Output.vi

MseloModuleSetOutput

Mse lo Module Set Outputs.vi

MSElibraryLvdtWrapperVis.lvlib

LabVIEW VI's

MseloModuleSetOutputs

MSElibrary Function

Mse Lvdt Get Fpga Revision.vi

MselvdtModuleGetFpgaRevision

Mse Lvdt Module Clear Errors.vi

MselLvdtModuleClearErrors

Mse Lvdt Module Clear Latch.vi

MselvdtModuleClearLatch

LabVIEW VI's and corresponding MSElibrary functions

Mse Lvdt Module Create.vi

MselLvdtModuleCreate

Mse Lvdt Module Delete.vi

MselLvdtModuleDelete

Mse Lvdt Module Enable Diags.vi

MselvdtModuleEnableDiags

Mse Lvdt Module Get Adc Values.vi

MselLvdtModuleGetAdcValues

Mse Lvdt Module Get Channel Presence.vi

MselLvdtModuleGetChannelPresence

Mse Lvdt Module Get Excitation Values.vi

MselLvdtModuleGetExcitationValues

Mse Lvdt Module Get Latch.vi

MselLvdtModuleGetLatch

Mse Lvdt Module Get Module Error State.vi

MselvdtModuleGetModuleErrorState

Mse Lvdt Module Get Module Errors.vi

MselLvdtModuleGetModuleErrors

Mse Lvdt Module Get Num Channels.vi

MselLvdtModuleGetNumChannels

Mse Lvdt Module Get Positions.vi

MselLvdtModuleGetPositions

Mse Lvdt Module Get Resolution.vi

MselLvdtModuleGetResolution

Mse Lvdt Module Get Teach Sensor Gain Finished.vi

MselLvdtModuleGetTeachSensorGainFinished

Mse Lvdt Module Get Sensor Gain.vi

MselLvdtModuleGetSensorGain

Mse Lvdt Module Get Uom.vi

MselLvdtModuleGetUom

Mse Lvdt Module Get Voltage.vi

MselLvdtModuleGetVoltage

Mse Lvdt Module Initialize.vi

MselLvdtModulelnitialize

Mse Lvdt Module Set Channel Presence.vi

MselLvdtModuleSetChannelPresence

Mse Lvdt Module Set Diagnostics Enabled.vi

MselvdtModuleSetDiagnosticsEnabled

Mse Lvdt Module Set Excitation Frequency.vi

MselvdtModuleSetExcitationFrequency

Mse Lvdt Module Set Excitation Voltage.vi

MselvdtModuleSetExcitationVoltage

Mse Lvdt Module Set Resolution.vi

MselLvdtModuleSetResolution

Mse Lvdt Module Set Sensor Gain.vi

MselLvdtModuleSetSensorGain

Mse Lvdt Module Set Uom.vi

MselLvdtModuleSetUom

Mse Lvdt Module Teach Sensor Gain.vi

298

MselLvdtModuleTeachSensorGain

LabVIEW

MSElibraryModuleWrapperVis.lvlib

LabVIEW VI's

MSElibrary Function

Mse Module Broadcast.vi

MseModuleBroadcast

Mse Module Clear Errors.vi

MseModuleClearErrors

Mse Module Create.vi

MseModuleCreate

Mse Module Delete.vi

MseModuleDelete

Mse Module Get Adc Values.vi

MseModuleGetAdcValues

Mse Module Get Async Msg Channel Status.vi

MseModuleGetAsyncMsgChannelStatus

Mse Module Get Async Msg Dhcp.vi

MseModuleGetAsyncMsgDhcp

Mse Module Get Async Msg lp Address.vi

MseModuleGetAsyncMsglpAddress

Mse Module Get Async Msg Latch.vi

MseModuleGetAsyncMsglLatch

Mse Module Get Async Msg Mac Address.vi

MseModuleGetAsyncMsgMacAddress

Mse Module Get Async Msg Netmask.vi

MseModuleGetAsyncMsgNetmask

Mse Module Get Async Msg Port.vi

MseModuleGetAsyncMsgPort

Mse Module Get Async Msg Serial Number.vi

MseModuleGetAsyncMsgSerialNumber

Mse Module Get Async Msg Type.vi

MseModuleGetAsyncMsgType

Mse Module Get Async Port.vi

MseModuleGetAsycPort

Mse Module Get Bootloader Version.vi

MseModuleGetBootloaderVersion

Mse Module Get Firmware Version.vi

MseModuleGetFirmwareVersion

Mse Module Get Ip Address.vi

MseModuleGetlpAddress

Mse Module Get Ip Static Address.vi

MseModuleGetlpStaticAddress

Mse Module Get Library Version.vi

MseModuleGetLibraryVersion

Mse Module Get Mac Address.vi

MseModuleGetMacAddress

Mse Module Get Module Error State.vi

MseModuleGetModuleErrorState

Mse Module Get Module Errors.vi

MseModuleGetModuleErrors

Mse Module Get Module Type.vi

MseModuleGetModuleType

Mse Module Get Netmask Static.vi

MseModuleGetNetmaskStatic

Mse Module Get Netmask.vi

MseModuleGetNetmask

Mse Module Get Network Delay.vi

MseModuleGetNetworkDelay

Mse Module Get Port.vi

MseModuleGetPort

Mse Module Get Program Percent Complete.vi

MseModuleGetProgramPercentComplete

Mse Module Get Program State.vi

MseModuleGetProgramState

Mse Module Get Serial Number.vi

MseModuleGetSerialNumber

Mse Module Get Udp Num Retries.vi

MseModuleGetUdpNumRetries

Mse Module Get Udp Timeout.vi

MseModuleGetUdpTimeout

Mse Module Get Using Dhcp.vi

MseModuleGetUsingDhcp

Mse Module Initialize.vi

MseModulelnitialize

Mse Module Program.vi

MseModuleProgram

Mse Module Reset.vi

MseModuleReset

Mse Module Set Async Port.vi

MseModuleSetAsyncPort

Mse Module Set Broadcasting Netmask.vi

MseModuleSetBroadcastingNetmask

Mse Module Set Ip Address.vi

MseModuleSetlpAddress

Mse Module Set Network Delay.vi

MseModuleSetNetworkDelay

Mse Module Set Udp Num Retries.vi

MseModuleSetUdpNumRetries

Mse Module Set Udp Timeout.vi MseModuleSetUdpTimeout
Mse Module Set Using Dhcp.vi MseModuleSetUsingDhcp
Mse Module Show Id.vi MseModuleShowld

Mse Module Show Resp Code.vi MseModuleShowRespCode
Mse Module Show Type.vi MseModuleShowType

HEIDENHAIN MSElibrary

299

LabVIEW VI's and corresponding MSElibrary functions

LabVIEW VI's and corresponding MSElibrary functions

MSElibraryTtiIWrapperVis.lvlib

LabVIEW VI's

MSElibrary Function

Mse Ttl Module Acknowledge Referencing.vi

MseTtIModuleAcknowledgeReferencing

Mse Ttl Module Clear Errors.vi

MseTtIModuleClearErrors

Mse Ttl Module Create.vi

MseTtIModuleCreate

Mse Ttl Module Delete.vi

MseTtIModuleDelete

Mse Ttl Module Enable Diags.vi

MseTtIModuleEnableDiags

Mse Ttl Module Enable Error Checking.vi

MseTtIModuleEnableErrorChecking

Mse Ttl Module Get Adc Values.vi

MseTtIModuleGetAdcValues

Mse Ttl Module Get Channel Error State.vi

MseTtIModuleGetChannelErrorState

Mse Ttl Module Get Channel Presence.vi

MseTtIModuleGetChannelPresence

Mse Ttl Module Get Counting Direction.vi

MseTtIModuleGetCountingDirection

Mse Ttl Module Get Counts.vi

MseTtIModuleGetCounts

Mse Ttl Module Get Encoder Type.vi

MseTtIModuleGetEncoderType

Mse Ttl Module Get Error Compensation.vi

MseTtIModuleGetErrorCompensation

Mse Ttl Get Fpga Revision.vi

MseTtIModuleGetFpgaRevision

Mse Ttl Module Get Latches.vi

MseTtIModuleGetLatches

Mse Ttl Module Get Line Count.vi

MseTtIModuleGetLineCount

Mse Ttl Module Get Signal Period.vi

MseTtIModuleGetSignalPeriod

Mse Ttl Module Get Module Error State.vi

MseTtIModuleGetModuleErrorState

Mse Ttl Module Get Module Errors.vi

MseTtIModuleGetModuleErrors

Mse Ttl Module Get Num Channels.vi

MseTtIModuleGetNumChannels

Mse Ttl Module Get Positions.vi

MseTtIModuleGetPositions

Mse Ttl Module Get Referencing Complete.vi

MseTtIModuleGetReferencingComplete

Mse Ttl Module Get Referencing State.vi

MseTtIModuleGetReferencingState

Mse Ttl Module Get Resolution.vi

MseTtIModuleGetResolution

Mse Ttl Module Get Uom.vi

MseTtIModuleGetUom

Mse Ttl Module Initialize.vi

MseTtIModulelnitialize

Mse Ttl Module Set Channel Presence.vi

MseTtIModuleSetChannelPresence

Mse Ttl Module Set Counting Direction.vi

MseTtIModuleSetCountingDirection

Mse Ttl Module Set Encoder Type.vi

MseTtIModuleSetEncoderType

Mse Ttl Module Set Error Compensation.vi

MseTtIModuleSetErrorCompensation

Mse Ttl Module Set Latch.vi

MseTtIModuleSetLatch

Mse Ttl Module Set Line Count.vi

MseTtIModuleSetLineCount

Mse Ttl Module Set Signal Period.vi

MseTtIModuleSetSignalPeriod

Mse Ttl Module Set Uom.vi

MseTtIModuleSetUom

300

Mse Ttl Module Start Referencing.vi

MseTtIModuleStartReferencing

LabVIEW

13.4 MSElabview DAQ utility explanation and operating

instructions

The MSElabview DAQ (Data AcQuisition) Utility is a VI that uses sub-VI wrappers to access the MSElibrary.dil. The DAQ util-
ity must be run from within the LabVIEW IDE and the PC it is running on must have an Ethernet connection (direct or via a

networking device) to the base module of the MSE1000 system. The utility requires MSE1000 system's initial configuration
to be completed using the MSEsetup application, the resulting ModuleConfig.xml file is then accessed from the DAQ utility.

The necessary files are:

MSElabview_DAQ_Utility_v100.vi

Load Module MCL.vi

LabVIEW MSE 1000 DAQ Utility.lvproj (for LabVIEW project)
MSElibrary.dll

QtCore4.dll

QtXml4.dll

xml file created using MSEsetup

Run MSElabview_DAQ_utility_v100.vi

FAE T T Pt D= TV A E= =
LR = |/ - Sowih

» Click the Load Module Information button to load the ModuleConfig.xml file into memory and display it to the screen

HEIDENHAIN MSElibrary 301

ing instructions

M“view DAQ utility explanation and operat

ing instructions

Msnview DAQ utility explanation and operat

» Click the Latch and Process button to latch live data and display it to the screen

Each press of this button will re-latch the live data. This can represent latching data of a part from a manufacturing run

and compare it to a “gold master” part for a PASS/FAIL comparison.

A first pass shows a good part...

 — o _3_-_I

302

LabVIEW

» Once done processing click the Exit button

LA et TVt
R

HEIDENHAIN MSElibrary

303

ing instructions

M‘view DAQ utility explanation and operat

suononisul Bunesado pue uoneuejdxa AJjin pyq maIAge|3SIN

LabVIEW

304

Symbols

1Vpp functions ... 122
1Vpp methods ... 122

A

acknowledgeAbsolutePosi-

tion ... 127
acknowledgeReferencing ... 196
ADC_OPTIONS ... 37
addModule ... 61
ANALOG_DIAG_VOLTAGES_

ENUM ... 50
asynchronous methods ... 211

broadcastOpenConnection ... 72

C

C examples ... 273
classes ... 26, 52
clearAllErrors ... 77
clearErrorsAndWarnings ... 99
clearlntegrityErrors ... 77
computeResolutionAndOff-
set ... 180
configuring MSE 1000 ... 19
constants ... 57
COUNTER_STATUS ... 41
COUNT_REQUEST_OPTION ... 37
counts, getting ... 263
COUNTS_PER_LINE ... 59
createChain ... 62

D

debouncing latency ... 235
decodeChannelStatusMsg ... 212
decodeConnectMsg ... 211

decodeElementType ... 214
decodeErrorType ... 213
decodelatchMsg ... 212
definitions ... 25

Delphi examples ... 283

detectSignalType ... 128
DeviceData ... 53
DEVICE_ID_SIZE ... 57
device methods ... 95
DEVICE_NAME_SIZE ... 57
DHCR changing ... 22
diagnostic modes ... 232
full ... 232

minimal ... 232

none ... 232

status ... 232

E

enableAnalogDiag ... 123
enableDiags ... 77
enableErrorChecking ... 99
Encoderinfo ... 55
Encoder, setting informa-

tion ... 264
ENCODER_TYPES_ENUM ... 38
ENDAT_DIAG ... 33

HEIDENHAIN MSElibrary

ENDAT_ERROR_RESULT ... 32
ENDAT_ERRORS ... 32

EnDat functions ... 101

EnDat methods ... 101
ENDAT_WARNINGS ... 33
enumerations ... 29

Ethernet cable ... 20

F

firmware ... 3

firmware, programmimg ... 270
fonts ... 3

functions ... 25

G

general functions ... 65
general methods ... 65
get1VppModule ... 63

getAdcValues ... 75
getAllElements ... 215
getAnalogModule ... 64
getAsyncMsgType ... 211
getAsyncPort ... 72
getChainCreationState ... 62
getChannelPresence ... 106, 161,

195
getChannelStatus ... 99
getCode ... 56
getConfig ... 66
getCountingDirection ... 96
getCounts ... 68, 102, 192
getCurrent ... 177
getDeviceData ... 104
getDeviceModule ... 63
getDeviceOffset ... 69
getDiag ... 103, 122
getDiagVoltages ... 178
getDistinguishableRevolu-

tions ... 104
getElement ... 214, 215
getEncoderld ... 105
getEncoderinfo ... 95
getEncoderName ... 105
getEncoderType ... 98
getEndatModule ... 63
getErrorCompensation ... 96
getErrors ... 103
getExcitationValues ... 159
getFilename ... 214
getFpgaRevision ...
getlnputs ... 146
getlntegrity ... 76
getlO ... 146
getloModule ... 63
getlLatch ... 75

162, 196

getLeft ... 67
getlLibraryVersion ... 77
getLine ... 566
getLineCount ... 125, 193
getLvdtModule ... 64

getMethod ... 56
getModule ... 62
getModuleData ... 67
getModuleType ... 66
getNetworkDelay ... 74

getNumChannels ... 67 217

getNumModules ... 62, 217

getOffset ... 180

getOutput ... 1562

getOutputs ... 145

getPneumaticModule ... 64

getPositions ... 101, 123, 160, 191

getProgrammingPercentCom-
plete ... 70

getProgrammingState ... 70
getReferencingState ... 127 196
getResolution ... 98, 161, 179

getRotaryFormat ... 68
getScaledValues ... 178
getScaling ... 97 181
getSensorGain ... 163
getSerialNumber ... 105
getSignalPeriod ... 125, 194
getSignalType ... 127
getSpecificChannel ... 216

getSpecificModule ... 216
getTeachSensorGainFin-
ished ... 164

getTtiModule ... 64
getUdpNumRetries ... 74
getUdpTimeout ... 73

getUom ... 98, 158
getValues ... 177
getVoltage ... 160, 176

getWarnings ... 102
|

initAbsolutePosition ... 126
initializeFirmware ... 65
initializeModule ... 65, 101, 122,
144, 152, 158, 176, 191
initReferencing ... 195
installation ... 24
INTEGRITY_ENUMS ... 39
interface methods ... 61
INTERPOLATION_VALUE ... 59
I/O functions ... 144
I/O methods ... 144

IP address
changing ... 20
initial ... 20
isReferencingComplete ... 126,
195
L
LabVIEW ... 285
latch

determining which are set ... 235
reading data ... 235
LATCH_CHOICE ... 36

latching ... 266

LATCH_OPTIONS ... 36

LeftData ... 54

library software ... 23

loadXml ... 213

LVDT_EXCITATION_FREQUENCY_
MAX_KHZ ... 60

LVDT_EXCITATION_FREQUENCY_
MIN_KHZ ... 60

LVDT_EXCITATION_VOLTAGE_

305

Index

Index

MAX_VPP ... 60
LVDT_EXCITATION_VOLTAGE_
MIN_VPP ... 60
LVDT methods and func-
tions ... 158
LVDT_UOM ... 49
LVDT_UPDATE_CHOICES ... 49

M

MAX_CHANNELS_PER_MOD-
ULE ... b8
MAX_NUM_ANALOG_AVG_SAM-
PLES ... 60
MAX_NUM_MODULES ... 58
methods ... 25
module chain
creating, broadcasting ... 261
creating, manually ... 262
initializing ... 261

ModuleConfig base ... 213
ModuleConfig reader ... 213
ModuleConfig writer ... 213
ModuleData ... 52
MODULE_ID ... 30
modules ... 3,25

Mse1VppDetectSignalType ... 143
Mse1VppGetSignalType ... 143
Mse1VppModule ... 26
Mse1VppModuleAcknowledgeAb-

solutePosition ... 142
Mse1VppModuleClearEr

rors ... 138
Mse1VppModuleCreate ... 128
Mse1VppModuleDelete ... 128
Mse1VppModuleEnableAnalog-

Diag ... 139
Mse1VppModuleEnableDi-

ags ... 138
Mse1VppModuleEnableErrorCheck-

ing ... 142
Mse1VppModuleGetAdcVal-

ues ... 139
Mse1VppModuleGetAnalogDi-

ag ... 139
Mse1VppModuleGetChannelEr

rorState ... 137
Mse1VppModuleGetChannelSta-

tus ... 137
Mse1VppModuleGetCountingDi-

rection ... 133
Mse1VppModuleGetCounts ...
Mse1VppModuleGetDevice Off-

set ... 135
Mse1VppModuleGetEncoder

Type ... 130
Mse1VppModuleGetErrorCompen-

sation ... 131
Mse1VppModuleGetLatch-

es ... 136
Mse1VppModuleGetLine-

Count ... 140
Mse1VppModuleGetModuleEr

rors ... 137
Mse1VppModuleGetModuleEr

rorState ... 136

133

306

Mse1VppModuleGetNumChan-
nels ... 129
Mse1VppModuleGetPosi-
tions ... 134
Mse1VppModuleGetReferencing-
Complete ... 141
Mse1VppModuleGetReferencing-
State ... 142
Mse1VppModuleGetResolu-
tion ... 133
Mse1VppModuleGetRotaryFor-
mat ... 135
Mse1VppModuleGetSignalPe-
riod ... 141
Mse1VppModuleGetUom ... 130
Mse1VppModulelnitialize ... 129
Mse1VppModuleSetCountingDirec-
tion ... 132
Mse1VppModuleSetDevice Off-
set ... 135
Mse1VppModuleSetEncoder
Type ... 129
Mse1VppModuleSetErrorCompen-
sation ... 131
Mse1VppModuleSetLatch ... 136
Mse1VppModuleSetLatchDebounc-
ing ... 138
Mse1VppModuleSetLine-
Count ... 140
Mse1VppModuleSetRotaryFor-
mat ... 134
Mse1VppModuleSetSignalPe-
riod ... 140
Mse1VppModuleSetUom ... 130
Mse1VppModuleStartReferenc-

ing ... 141
Mse1VppModuleWrapper ... 27
Mse1VppSetSignalType ... 143

MSE1000_ASYNC_PORT ... 59
MSE1000_CLIENT_DEFAULT_
PORT ... 59
MSE1000ConnectResponse ... 54
MSE1000_PORT ... 59
MseAnalogModule ... 26
MseAnalogModuleClearEr
rors ... 184
MseAnalogModuleClear
Latch ... 185
MseAnalogModuleComputeResolu-
tionAndOffset ... 190
MseAnalogModuleCreate ... 182
MseAnalogModuleDelete ... 182
MseAnalogModuleGetAdcVal-
ues ... 184
MseAnalogModuleGetCur
rent ... 185
MseAnalogModuleGetDevice Off-
set ... 187
MseAnalogModuleGetDiagVoltag-
es ... 188
MseAnalogModuleGetLatch ... 184
MseAnalogModuleGetModuleEr
rors ... 183
MseAnalogModuleGetModuleEr
rorState ... 183

MseAnalogModuleGetNumChan-

nels ... 183
MseAnalogModuleGetOff-

set ... 190
MseAnalogModuleGetResolu-

tion ... 189
MseAnalogModuleGetScaledVal-

ues ... 186
MseAnalogModuleGetScal-

ing ... 188
MseAnalogModuleGetVal-

ues ... 186
MseAnalogModuleGetVolt-

age ... 185
MseAnalogModulelnitialize ... 182
MseAnalogModuleSetDevice Off-

set ... 187
MseAnalogModuleSetNumSam-

ples ... 188
MseAnalogModuleSetOff-

set ... 189
MseAnalogModuleSetResolu-

tion ... 189
MseAnalogModuleSetScal-

ing ... 187

MseAnalogModuleWrapper ... 27
MSE_CHAIN_CREATION_

STATE ... 29
MseComm ... 26
MseConfigBase ... 26, 213

MseConfigFileCreate ... 219
MseConfigFileDecodeElement-

Type ... 220
MseConfigFileDecodeError-
Type ... 220

MseConfigFileDelete ... 219

MseConfigFileGetAllEle-

ments ... 222
MseConfigFileGetChannelEle-
ment ... 221

MseConfigFileGetElement ... 221
MseConfigFileGetFilename ... 220
MseConfigFileGetModuleEle-
ment ... 221
MseConfigFileGetNumChan-
nels ... 224
MseConfigFileGetNumMod-
ules ... 223
MseConfigFileGetSpecificChan-
nel ... 223
MseConfigFileGetSpecificMod-
ule ... 223
MseConfigFileLoadXml ... 219
MseConfigFileReloadXml ... 219
MseConfigFileRemoveMod-

ule ... 225
MseConfigFileSetChannelEle-

ment ... 224
MseConfigFileSetModuleEle-

ment ... 224
MseConfigFileValidateEle-

ments ... 222
MseConfigFileWrapper ... 27
MseConfigFileWriteFile ... 225
MseConfigReader ... 27 214, 271

MseConfigWriter ... 27 217
MseDeviceModule ... 26, 95
MseEndatModule ... 26
MseEndatModuleClearEr
rors ... 118
MseEndatModuleCreate ...
MseEndatModuleDelete ...
MseEndatModuleEnableDi-
ags ... 120
MseEndatModuleEnableError
Checking ... 121
MseEndatModuleGetAdcVal-
ues ... 121
MseEndatModuleGetChannelEr
rorState ... 116
MseEndatModuleGetChannelPres-
ence ... 108
MseEndatModuleGetChannelSta-
tus ... 117
MseEndatModuleGetChannelWarn-
ingState ... 117
MseEndatModuleGetCountingDi-
rection ... 111
MseEndatModuleGet-
Counts ... 112
MseEndatModuleGetDevice Off-
set ... 114
MseEndatModuleGetDiags ... 120
MseEndatModuleGetDistinguish-
ableRevolutions ... 111
MseEndatModuleGetEncode-
rid ... 119
MseEndatModuleGetEncoder
Name ... 118
MseEndatModuleGetEncoderSeri-
alNumber ... 119
MseEndatModuleGetEncoder
Type ... 108
MseEndatModuleGetEndatEr
rors ... 117
MseEndatModuleGetEndatWarn-
ings ... 118
MseEndatModuleGetErrorCompen-
sation ... 110
MseEndatModuleGetLatch-
es ... 115
MseEndatModuleGetModuleEr
rors ... 116
MseEndatModuleGetModuleEr
rorState ... 116
MseEndatModuleGetNumChan-
nels ... 108
MseEndatModuleGetPosi-
tions ... 113
MseEndatModuleGetResolu-
tion ... 12
MseEndatModuleGetRotaryFor-
mat ... 114
MseEndatModuleGetScal-
ing ... 110
MseEndatModuleGetUom ... 109
MseEndatModulelnitialize ... 107
MseEndatModuleSetDevice Off-
set ... 114
MseEndatModuleSetErrorCompen-

107
107

HEIDENHAIN MSElibrary

sation ... 109
MseEndatModuleSetLatch ... 115
MseEndatModuleSetLatchDe-

bouncing ... 119
MseEndatModuleSetRotaryFor-

mat ... 113
MseEndatModuleSetScal-

ing ... 110
MseEndatModuleSetUom ...
MseEndatModuleWrapper ..
Mselnterface ... 26, 61
MseloModule ... 26
MseloModuleClearErrors ...

109
. 27

149

MseloModuleClearLatch ... 151
MseloModuleCreate ... 147
MseloModuleDelete ... 147

MseloModuleGetAdcValues ...
MseloModuleGetlnputs ... 150
MseloModuleGetlO ... 151
MseloModuleGetLatch ... 151
MseloModuleGetModuleEr

rors ... 148
MseloModuleGetModuleEr

rorState ... 148
MseloModuleGetNumChan-

nels ... 148
MseloModuleGetOutputs ...
MseloModulelnitialize ... 147
MseloModuleSetOutput ... 150
MseloModuleSetOutputs ... 149
MseloModuleWrapper ... 27
MSElabview DAQ utility ... 293
MSElibrary1VppWrapperVI.Iv-

lib ... 287
MSElibraryAnalogWrapperVI.

Ivlib ... 288
MSElibraryConfigFileWrapperVis.

Ivlib ... 288
MSElibraryEndatWrapperVils.

Ivlib ... 289
MSElibraryloWrapperVls.Iv-

lib ... 290
MSElibraryLvdtWrapperVis.Iv-

lib ... 290
MSElibraryModuleWrapperVis.

Ivlib ... 291
MSElibraryPneumaticWrapperVis.

Ivlib ... 289
MSElibraryTtiWrapperVls.Iv-

lib ... 292
MselvdtGetFpgaRevision ... 175
MselLvdtGetSensorGain ... 174
MselvdtGetTeachSensorGainFin-

ished ... 175
MselLvdtModule ... 26
MselLvdtModuleClearErrors ...
MselLvdtModuleClearLatch ...
MselLvdtModuleCreate ... 164
MselLvdtModuleDelete ... 164
MselLvdtModuleEnableDi-

ags ... 169
MselLvdtModuleGetAdcVal-

ues ... 169
MselLvdtModuleGetChannelPres-

ence ... 173

149

150

169
168

MselvdtModuleGetDevice Off-
set ... 171
MselvdtModuleGetExcitationVal-
ues ... 171
MselvdtModuleGetlLatch ... 167
MselvdtModuleGetModuleEr
rors ... 168
MselvdtModuleGetModuleEr
rorState ... 168
MselvdtModuleGetNumChan-
nels ... 165
MselvdtModuleGetPosi-
tions ... 170
MselvdtModuleGetResolu-
tion ... 166
MselLvdtModuleGetScaling ... 167
MselvdtModuleGetUom ... 166
MselLvdtModuleGetVoltage ... 172
MselvdtModulelnitialize ... 165
MselvdtModuleSetChannelPres-
ence ... 173
MselvdtModuleSetDeviceOff-
set ... 170
MselvdtModuleSetExcitationFre-
quency ... 172
MselvdtModuleSetExcitationVolt-
age ... 172
MselvdtModuleSetOversam-
pling ... 175
MselvdtModuleSetResolu-
tion ... 166
MselLvdtModuleSetScaling ... 167
MselvdtModuleSetUom ... 165
MselvdtModuleWrapper ... 27
MselvdtSetDiagnosticsEn-
abled ... 173
MselvdtSetSensorGain ...
MselvdtTeachSensorGain ...
MseModule ... 26, 65
MseModuleBroadcast ... 89
MseModuleClearErrors ... 81
MseModuleCreate ... 78
MseModuleDelete ... 78
MseModuleGetAdcValues ... 80
MseModuleGetAsyncMsgChannel-
Status ... 93
MseModuleGetAsyncMsgDh-
cp ... 92
MseModuleGetAsyncMsglpAd-
dress ... 91
MseModuleGetAsyncMs-
glLatch ... 94
MseModuleGetAsyncMsgMacAd-
dress ... 92
MseModuleGetAsyncMsgNet-
mask ... 92
MseModuleGetAsyncMs-
gPort ... 91
MseModuleGetAsyncMsgSerial-
Number ... 93
MseModuleGetAsyncMs-
glype ... 91
MseModuleGetBootloaderVer-
sion ... 85
MseModuleGetFirmwareVer-

174
174

307

Index

Index

sion ... 85
MseModuleGetlpAddress ... 81
MseModuleGetlpStaticAd-

dress ... 82
MseModuleGetLibraryVer-
sion ... 79

MseModuleGetMacAddress ... 84
MseModuleGetModuleEr

rors ... 80
MseModuleGetModuleEr

rorState ... 79
MseModuleGetModuleType ... 79
MseModuleGetNetmask ... 82
MseModuleGetNetmaskStat-

ic ... 82
MseModuleGetNetworkDe-
lay ... 89

MseModuleGetPort ... 83
MseModuleGetProgramPercent-

Complete ... 90
MseModuleGetProgramSta-
te ... 90
MseModuleGetSerialNum-
ber ... 85
MseModuleGetUdpNumRe-
tries ... 88

MseModuleGetUdpTimeout ... 87
MseModuleGetUsingDhcp ... 84
MseModulelnitialize ... 78
MseModuleProgram ... 90
MseModuleReset ... 86
MseModuleSetAsyncPort ... 83
MseModuleSetBroadcastingNet-

mask ... 87
MseModuleSetlpAddress ... 81
MseModuleSetNetworkDe-

lay ... 88
MseModuleSetUdpNumRe-

tries ... 88
MseModuleSetUdpTimeout ... 87
MseModuleSetUsingDhcp ... 84
MseModuleShowl!d ... 86
MseModuleShowRespCode ... 94

MseModuleShowType ... 86
MseModuleWrapper ... 27
MsePneumaticModule ... 26

MsePneumaticModuleClearEr
rors ... 156
MsePneumaticModuleClear
Latch ... 157
MsePneumaticModuleCre-
ate ... 153
MsePneumaticModuleDe-
lete ... 153
MsePneumaticModuleGetAdcVal-
ues ... 155
MsePneumaticModuleGet-
Latch ... 157
MsePneumaticModuleGetModu-
leErrors ... 155
MsePneumaticModuleGetModu-
leErrorState ... 154
MsePneumaticModuleGetNum-
Channels ... 154
MsePneumaticModuleGetOut-

308

put ... 156
MsePneumaticModulelnitial-
ize ... 153
MsePneumaticModuleSetOut-
put ... 156
MsePneumaticModule\Wrap-
per ... 27

MSE_RESPONSE_CODE ... 34
MseTtIModule ... 26
MseTtIModuleAcknowledgeRefer
encing ... 209
MseTtIModuleClearErrors ...
MseTtIModuleCreate ... 197
MseTtIModuleDelete ... 197
MseTtIModuleEnableDiags ... 207
MseTtIModuleEnableErrorCheck-
ing ... 210
MseTtIModuleGetAdcVal-
ues ... 208
MseTtIModuleGetChannelEr
rorState ... 210
MseTtIModuleGetChannelPres-
ence ... 202
MseTtIModuleGetCountingDirec-
tion ... 201
MseTtIModuleGetCounts ...
MseTtIModuleGetDevice Off-
set ... 206
MseTtIModuleGetEncoder
Type ... 198
MseTtIModuleGetErrorCompensa-
tion ... 200
MseTtIModuleGetFpgaRevi-
sion ... 210
MseTtIModuleGetLatches ... 206
MseTtIModuleGetLine-
Count ... 203
MseTtIModuleGetModuleEr
rors ... 207
MseTtIModuleGetModuleEr
rorState ... 207
MseTtIModuleGetNumChan-
nels ... 198
MseTtIModuleGetPositions ...
MseTtIModuleGetReferencing-
State ... 209
MseTtIModuleGetResolu-
tion ... 202
MseTtIModuleGetRotaryFor
mat ... 205
MseTtIModuleGetScaling ... 200
MseTtIModuleGetSignalPeri-

208

204

204

od ... 203
MseTtIModuleGetUom ... 199
MseTtIModulelnitialize ... 197

MseTtIModulelsReferencingCom-
plete ... 208
MseTtIModuleSetChannelPres-
ence ... 201
MseTtIModuleSetCountingDirec-
tion ... 201
MseTtIModuleSetDevice Off-
set ... 205
MseTtIModuleSetEncoder-
Type ... 198

MseTtIModuleSetErrorCompensa-

tion ... 199
MseTtIModuleSetLatch ... 206
MseTtIModuleSetLine-

Count ... 202
MseTtIModuleSetRotaryFor-

mat ... 205
MseTtIModuleSetScaling ... 200
MseTtIModuleSetSignalPeri-

od ... 203
MseTtIModuleSetUom ... 199
MseTtIModuleStartReferenc-

ing ... 209
MseTtIModuleWrapper ... 27
MSE_XML_ELEMENTS ... 43
MSE_XML_RETURN ... 42

N

NUM_ENDAT_ERRORS ... 32
NUM_ENDAT_WARNINGS ... 33
NUM_INTEGRITY_RANGES ... 59
NUM_LATCH_TYPES ... 59
NUM_LVDT_CHANNELS ... 59
NUM_MSE1000_ANALOG_CHAN-
NELS ... 60
NUM_MSE1000_ANALOG_VAL-
UES_PER_CHANNEL ... 60
NUM_MSE1000_IO_INPUTS ... 57
NUM_MSE1000_IO_OUT-

PUTS ... 57
(0]
overview ... 25
P
pneumatic functions ... 152
pneumatic methods ... 152
prerequisites ... 25
program ... 70
PROGRAMMING_STATE_
ENUMS ... 46
R

REFERENCE_MARK_ENUM ... 40
reloadXml ... 213
removeConnections ... 61
removeSpecificModuleNo-

de ... 214
resetMse1000 ... 69
restoreFactoryDefaults ... 73
return values ... 56
ROTARY_FORMAT ... 36

S

SERIAL_NUMBER_SIZE ... 57
setAsyncMode ... 76
setAsyncPort ... 71
setBroadcastingNetmask ... 73
setChannelPresence ... 161, 194
setCountingDirection ... 126, 194
setDeviceOffset ... 69

setDhep ... 72
setDiagnosticsEnabled ... 162

setElement ... 217 218
setEncoderinfo ... 95, 106
setEncoderType ... 124, 192
setErrorCompensation ... 96
setExcitationFrequency ... 160
setExcitationVoltage ... 159
setlp ... 71

setlLatch ... 75
setlLatchDebouncing ... 100
setLineCount ... 124, 193
setNetworkDelay ... 74
setNumSamples ... 179
setOffset ... 180

setOutput ... 145, 152
setOutputs ... 144
setOversampling ... 162
setResolution ... 162, 179
setRight ... 69
setRotaryFormat ... 68
setScaling ... 97 181
setSensorGain ... 163
setSignalPeriod ... 125, 193
setSignalType ... 128
setUdpNumRetries ... 74
setUdpTimeout ... 73
setUom ... 106, 124, 159, 192
showModuleld ... 71
showModuleType ... 70
showRespCode ... 56
SIGNAL_TYPE ... 51
SIZE_BUILD_INFO ... 58
SIZE_IP_ADDRESS ... 58
SIZE_MAC_ADDRESS ... 58
SIZE_SERIAL_NUMBER ... 58
software latency ... 234
structures ... b2

system integrity ... 228

3.3V ... 229
5V ... 229
24V ... 229

CPU temperature ... 229
current ... 229

duplicate IP address ... 228
Ethernet chip ... 228
obtaining IP address ... 228
programming error ... 228
waiting for client ... 228

T
teachSensorGain ... 163
trigger
clearing ... 235
setting ... 235

trigger line ... 234
TTL_INTERPOLATION ... 50

U

UdpCmdType ... 47
UdpComm ... 26
UOM ... 29

\'

validateElements ... 216
Visual Basic examples ... 279

HEIDENHAIN MSElibrary

VPP_VOLTAGE_FEEDBACK ...

w

wrappers ... 27
writeFile ... 218

38

309

Index

Xapuj

310

HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Strake 5
83301 Traunreut, Germany

= +49866931-0

+49 8669 32-5061

E-mail: info@heidenhain.de

Technical support +49 8669 32-1000

Measuring systems @ +49 8669 31-3104
E-mail: service.ms-support@heidenhain.de

TNC support = +49 8669 31-3101
E-mail: service.nc-support@heidenhain.de

NC programming & +49 8669 31-3103
E-mail: service.nc-pgm@heidenhain.de

PLC programming @ +49 8669 31-3102
E-mail: service.plc@heidenhain.de

Lathe controls © +49 8669 31-3105
E-mail: service.lathe-support@heidenhain.de

www.heidenhain.de

895055-26 - pdf - 8/2016 - Printed in USA

