

www.rsf.at

MSA 7x0, MSA 8x0 SEALED LINEAR ENCODERS

INCREMENTAL AND ABSOLUTE LINEAR AND ANGLE ENCODERS, PRECISION GRADUATIONS

RSF Elektronik is one of the world's leading companies in the field of electronic linear and angle encoders and it offers an extensive portfolio which includes almost all designs which are required by the market. The typical resolutions or measuring steps range from a few micrometers down to the nanometre range.

RSF Elektronik, corporate head quarters Tarsdorf, Austria

RSF Elektronik, manufacturing subsidiary Stříbro, Czech Republic

Another core element of the product range are high-precision and resistant graduations which are manufactured in thin-layer technology on glass or other carrier substrates. RSF Elektronik also develops customized cable devices for the widest range of sectors and areas of application, and these are manufactured by the Stříbro subsidiary. In order to safeguard the company's high quality standard, a comprehensive quality assurance and environmental management system – certified according to DIN EN ISO 9001 and DIN EN ISO 14001 – has been put in place. Thanks to the company's extensive distribution network, optimum customer service is guaranteed in practically all regions.

TABLE OF CONTENTS

GENERAL DESCRIPTION	Design and operation04			
TECHNICAL INFORMATION	Accuracy			
	Connection cables, shielding, connectors, pin assignments			
	Interfaces			
	Switch signal output			
OVERVIEW	Overview, selection guide			
	Technical data	11		
LINEAR ENCODERS, MODELS	MSA 770, MSA 870	12		
	MSA 710, MSA 810	13		
	MSA 720, MSA 820			
	MSA 730, MSA 830	15		
DISTRIBUTION CONTACTS	Addresses	16		

DESIGN AND OPERATION

Linear encoders from RSF Eletronik are all-purpose. They are suited for manual applications; yet they are also particularly suitable for closed loop drive devices.

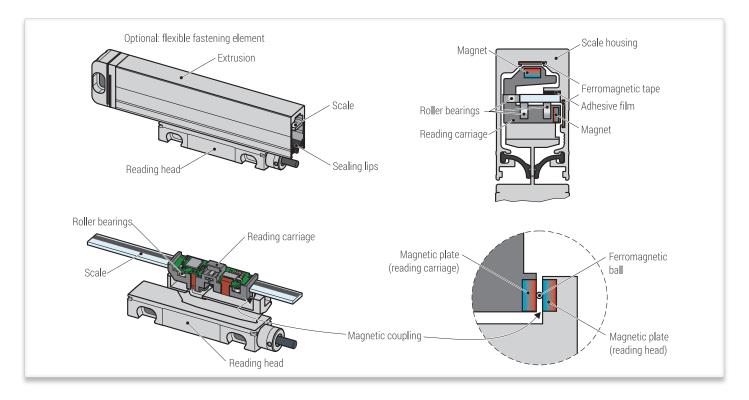
Owing to their sealed design, the linear encoders of the MSA 7 and MSA 8 series are predestined for applications in automation and production technology. They are ideally suited for metrology, printing and robotics, especially in applications where protection for the scale and reading head is required.

MSA 7 and **MSA 8** represent a systematic advancement of tried-and-tested devices and feature improved design details. During development, RSF Elektronik paid particular attention to the optimization of the accuracy of these devices. We achieved this goal thanks to the perfect combination of several individual components. Furthermore, the components that are subject to more stress have been optimized to increase system accuracy over the longer term.

Measuring devices are made up of two components: the **extrusion** and **reading head**. Preferably, the extrusion is to be mounted on the moveable part of the linear axis, and the reading head to the fixed part (cable duct) of the linear axis.

The **extrusion** consists of a stable aluminum scale housing, fastening elements, a scale and sealing lips.

Drip caps at the scale housing and specially formed sealing lips prevent the intrusion of dust and liquids into the extrusion. The fiber-reinforced sealing lips are highly abrasion-resistant. High velocities are feasible due to the high degree of rigidity of the unit, coupled with the ideally formed blade area of the reading head.


The scale is fastened by dint of a flexible adhesive film in the scale housing, which compensates for the differing linear expansion between the glass or glass ceramics and the aluminum. Thus a reproducible thermal behavior is ensured (expansion or shortening of the scale to the scale housing in case of temperature changes). The scale can additionally be fixed in the scale housing in order to adjust the thermal zero point to each measuring requirement. Expansion differences between aluminum scale housing and machine slide are evened out by flexible fastening elements. The high accuracy of the measuring scale is the result of a sophisticated lithographic process. A consistently accurate reproduction of the original measuring scale forms the basis for the manufacture of the highly accurate scales in RSF Elektronik measuring devices.

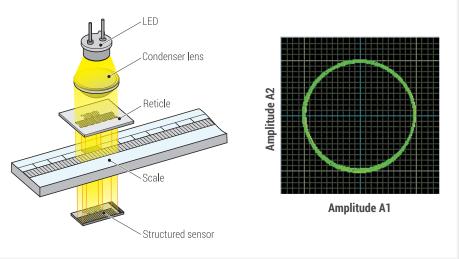
Depending on the model, the **reading head** is available with a **fixed** or **detachable cable**. The **reading carriage** includes a reticle and optoelectronics for signal generation. Hall-sensors are integrated in the reading head, which generate switch signals for an additional position detection or enable a selection of reference marks. They are activated by magnets that can be optionally positioned in any way on the extrusion by the customer. The evaluation electronics are positioned in the **reading carriage**, generating the evaluation signals (e.g. 1 Vpp or TTL).

Thanks to the design of the reading carriage alignment deviations between extrusion and machine guide are evened out. It rolls by dint of high-precision roller bearings on the scale and is pressed down by magnets that affect the ferromagnetic tapes on the extrusion (**magnet guide**). By mounting within the tolerance there are no forces between reading head and extrusion that could stress guide parts of the linear axis. Moreover, the extrusion is not subjected to any bending strain.

In the measuring direction, the reading carriage is connected by a wear-free and maintenancefree **magnetic coupling**. A ferromagnetic ball rolling freely between two magnetic plates makes for a connection that is very stiff in the measuring direction, yet flexible in all other degrees of freedom, minimizing the reversal error. Thus any deviation (within the tolerance) will be evened out by the ideal mounting of the measurement device.

The combination of magnetic guide and magnetic coupling allows for generous mounting tolerances without any negative influence on accuracy. Hence substantial benefits are achieved in comparison to traditional technologies.

A high accuracy grating is deployed as scale graduation. Depending on the model, glass $(\alpha \approx 8,5 \times 10^{-6}/K)$ or glass ceramics $(\alpha \approx 0 \times 10^{-6}/K)$ is employed as base.


The grating is the consistent series of lines and spaces. The width of one line and one space is called a grating period (T).

Parallel to the grating, there are one or more reference marks on a second track. Within the measuring length, any position is possible and additional reference marks can be chosen at will in a distance of 50 mm.

Linear encoders can also be equipped with distance-coded reference marks. After traveling a distance of 20 mm at maximum, the absolute tool position is available with these models.By dint of the optical scanning, a position-accurate evaluation of the reference marks is ensured.

Scale unit Grating period (T) Scale Principle of the standard reference marks: Reference mark 50 50 Principle of the distance-coded reference marks: Reference mark Πł 10 + 14T 10 + 13T 10 - 13T 10 **-** 14T 10 + 15T 10 - 15T 10 + 16T 20 20 20 20 + <u>1</u>T 20 + 1T 20 + 1T 20 + 1T

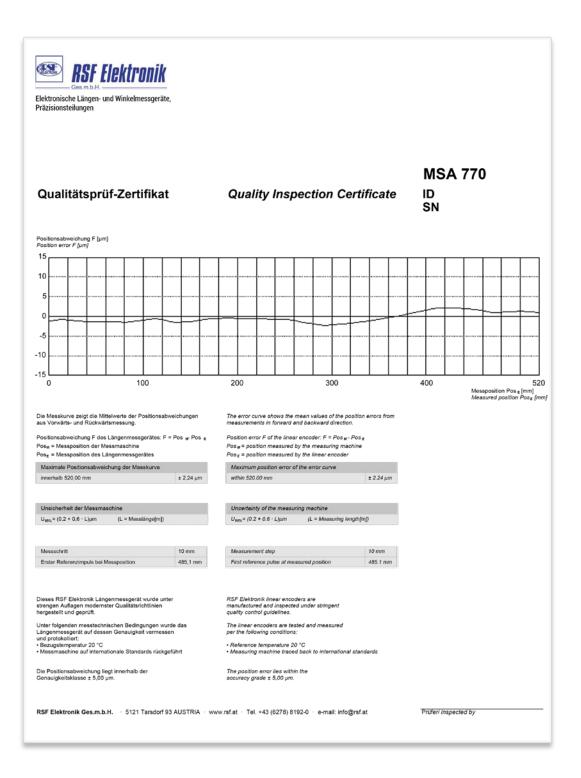
Transmissive singlefield scanning

These incremental linear encoders work according to a photoelectric measuring principle with a transmissive **singlefield scanning**.

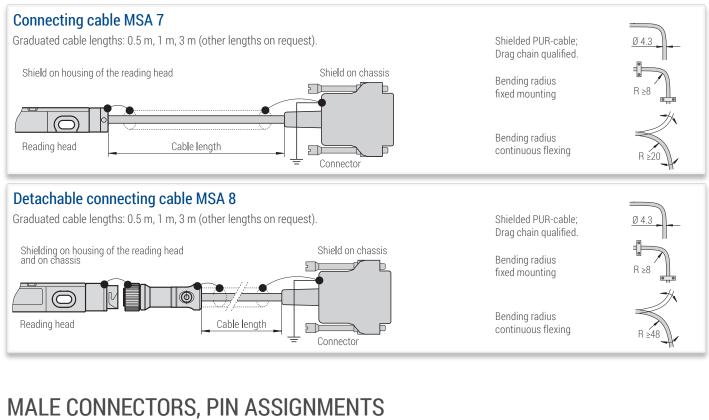
The regulated light of an infrared LED is collimated by a condenser lens, passes through the grid of the reticle and the scale and generates a periodic intensity distribution on the structured sensor.

The sensor generates sinusoidal signals of the highest quality that prove to be widely insensitive to possible contaminations, which can never be entirely ruled out despite all technical precautions.

The regulation of the LED ensures a constant signal amplitude, guaranteeing stability in the case of temperature fluctuations as well as with long-run operation.


ACCURACY

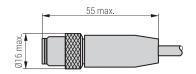
The accuracy of the linear encoders is classified with a "t tolerance" in µm/m (e.g. ±5 µm/m).


The accuracy refers to any meter within the measuring length. For measuring lengths less than 1000 mm, the accuracy specification applies to the whole measuring length.

For best system accuracy, the encoder should be mounted near the measuring plane, as parallel as possible to the machine guideway.

Example of a typical calibration chart for MSA 770:

CONNECTING CABLE, SHIELDING



Dimensions Pin assignment D-sub connector, 15-pin (Male, 15-pin, mass: 25 g) View on pins 59 12345678 þ 囯 40 9 10 11 12 13 14 15 囙 Pin 3 4 8 q 10 13 14 RI-A2-S1* S2* RI+ A2+ Sinusoidal voltage 0 V Occupied A1- \vee + V+ 0 V A1+ Occupied nc Sensor Sensor signals 1 Vpp RI T2 T1 TTL-signals Occupied 0 V V+ V+ 0 V S1* S2* RI Τ2 T1 nc Sensor Sensor

M12 connector, 12-pin

according to IEC 61076-2-101 LM012-Gxx-A

Dimensions (Male, 12-pin, mass: ca. 15 g)

Pin assignment View on pins

											/ 12	
Pin	1	2	3	4	5	6	7	8	9	10	11	12
Sinusoidal voltage signals 1 Vpp	V+	A1-	A2+	A2-	S2 *	Occupied	RI+	RI-	Occupied	A1+	S1 *	0 V
TTL-signals	V+	Τī	T2	T2	S2*	ŪS	RI	RĪ	Occupied	T1	S1 *	0 V

Sensor: the sensor pins are bridged in the chassis with the particular power supply.

- * Version without switch signals (version K) = nc.
- Shield is connected with the chassis.
- Pins or wires marked "occupied" or "nc" must not be used by the customer.

INTERFACES

SINUSOIDAL VOLTAGE SIGNALS 1 VPP

(drawing shows "positive counting direction") Two sinusoidal voltage signals A1 and A2 and one reference mark signal (all with inverted signals).

Power supply: +5 V ±10 %, max. 150 mA (unloaded) Track signals (differential voltage A1+ to A1- resp. A2+ to A2-): Signal amplitude 0.6 Vpp to 1.2 Vpp; typ. 1 Vpp (with terminating impedance Zo = 120 Ω between A1+ to A1- resp. A2+ to A2-)

Reference mark (differential voltage RI+ to RI-): Square-wave pulse with an amplitude of 0.5 to 0.9 V; typ. 0.7 V (with terminating impedance Zo = 120Ω between RI+ to RI-)

Advantage:

High traversing speed with long cable lengths possible.

SQUARE-WAVE SIGNALS

(drawing shows "positive counting direction")

With integrated interpolation electronics (for times -5, -10, -25 or -50) the photoelement output signals are converted into two square-wave signals that have a phase shift of 90°. The output signals are "differential" via line driver (RS 422). The measuring step equates to the distance between two edges of the square-wave signals.

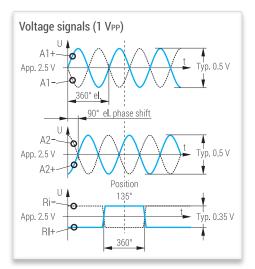
The controls/DROs must be able to detect each edge of the square-wave signals. The minimum edge separation a_{min} is listed in the technical data and refers to a measurement at the output of the interpolator (inside the reading head). Propagation-time differences in the line driver, the cable and the line receiver reduce the edge separation.

Propagation-time differences:

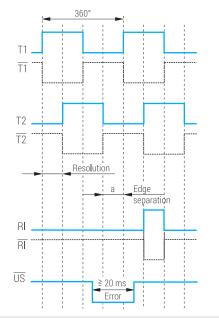
Line driver:max. 10 nsCable:0.2 ns/mLine receiver:max. 10 ns (referred to the recommended line receiver circuit)

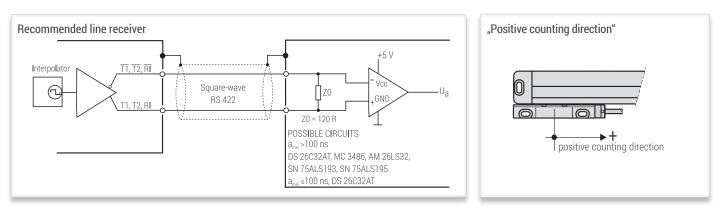
To prevent counting errors, the controls/DROs must be able to process the resulting edge separation.

Exapmle:

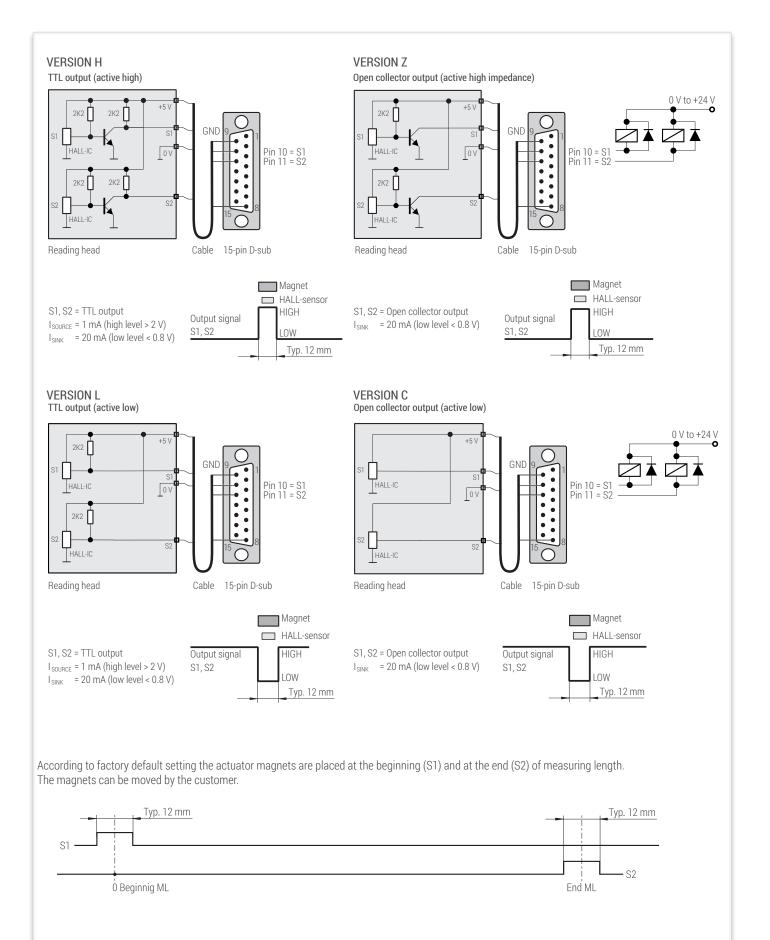

a_{min} = 125 ns, 10 m cable 125 ns - 10 ns - 10 x 0.2 ns - 10 ns = 103 ns

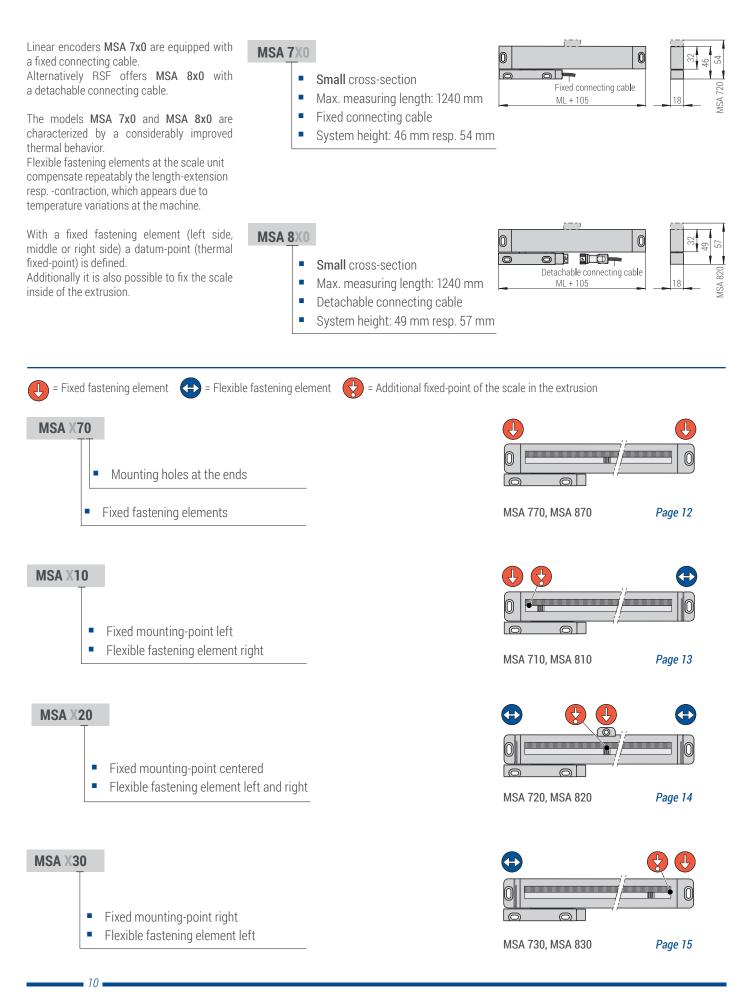
Power supply: +5 V ±10%, max. 180 mA (unloaded)


Advantages


- Noise immune signals

- No further subdividing electronics necessary




SWITCH SIGNAL OUTPUT

09

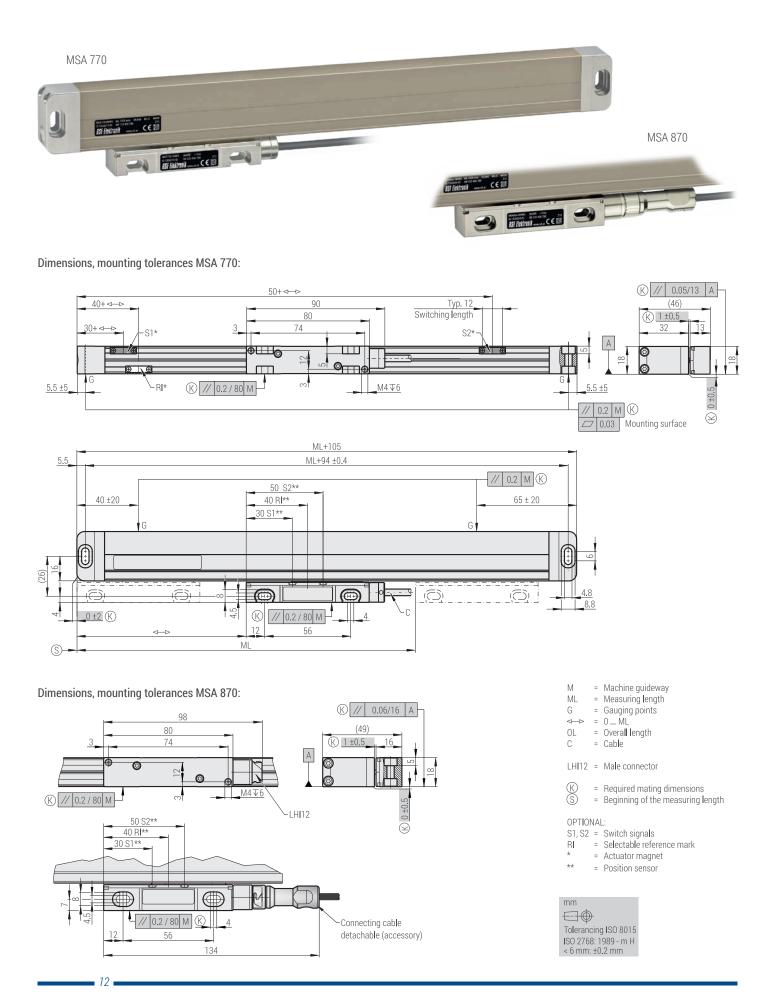
OVERVIEW, SELECTION GUIDE

TECHNICAL DATA MSA 7x0, MSA 8x0

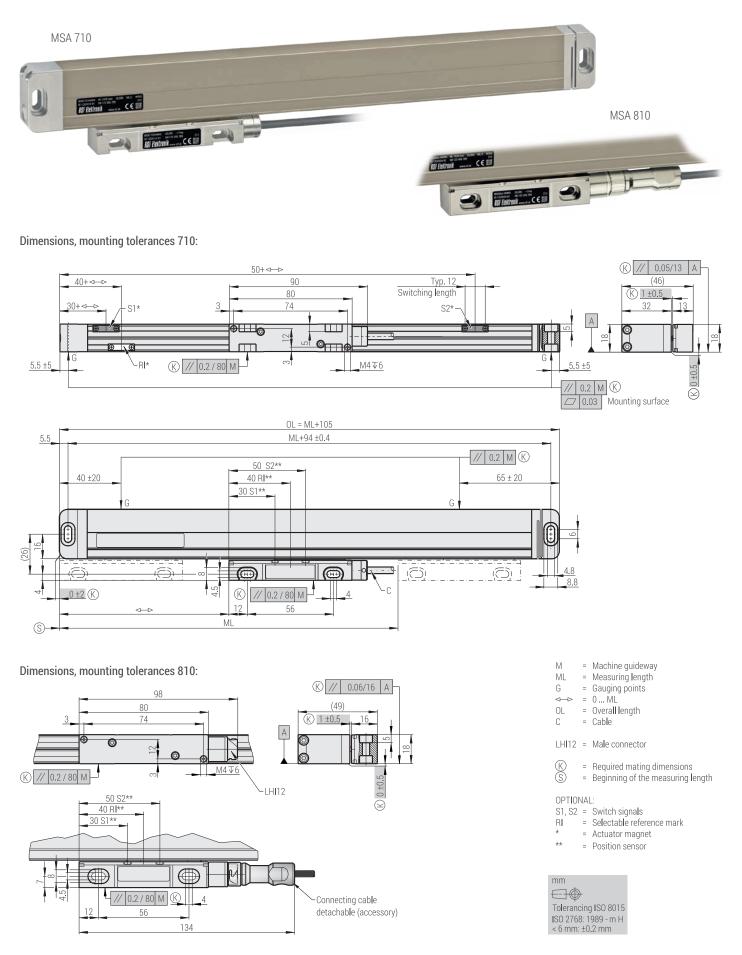
READING HEAD

Model	MSA 7x0 MSA 8x0	MSA 7x0 MSA 8x0	MSA 7x0 MSA 8x0	MSA 7x0 MSA 8x0	MSA 7x0 MSA 8x0		
Interface	\sim 1 Vpp	JTLx5	TTLx10 مر	TTLx25 م	 TTLx50		
Measuring step	Depending on external interpolation	1.0 µm	0.5 µm	0.2 µm	0.1 µm		
Signal period	20 µm						
Integrated interpolation		Times 5	Times 10	Times 25	Times 50		
Max. velocity	2.0 m/s	2.0 m/s	1.96 m/s	0.78 m/s	0.78 m/s		
Max. output frequency	100 kHz						
Edge separation a _{min}		250 ns	250 ns	250 ns	125 ns		
Electrical connection	Cable, 0.5 m, 1 m or 3 m mit D-sub connector 15-pin or M12 connector 12-pin						
Voltage supply	 Sinusoidal voltage signals ~ 1 Vpp: +5 V ±10 % Square-wave signals via line driver □: +5 V ±10 % 						
Power consumption max.	 Sinusoidal voltage signals ~ 1 Vpp: 825 mW (without load) Square-wave signals via line driver J.: 990 mW (without load) 						
Current consumption typ.	 Sinusoidal voltage signals ~ 1 Vpp: 150 mA (without load) Square-wave signals via line driver ⊥: 180 mA (without load) 						
Vibration 55 Hz – 2000 Hz Shock 8 ms	100 m/s ² 200 m/s ²						
Operating temperature Storage temperature	0 °C to 50 °C -20 °C to 70 °C						
Mass reading head	 MSA 7x0: 50 g (without cable) MSA 8x0: 65 g (without cable) Cable: 30 g/m, connector: D-sub connector: 28 g, M12 connector: 15 g 						

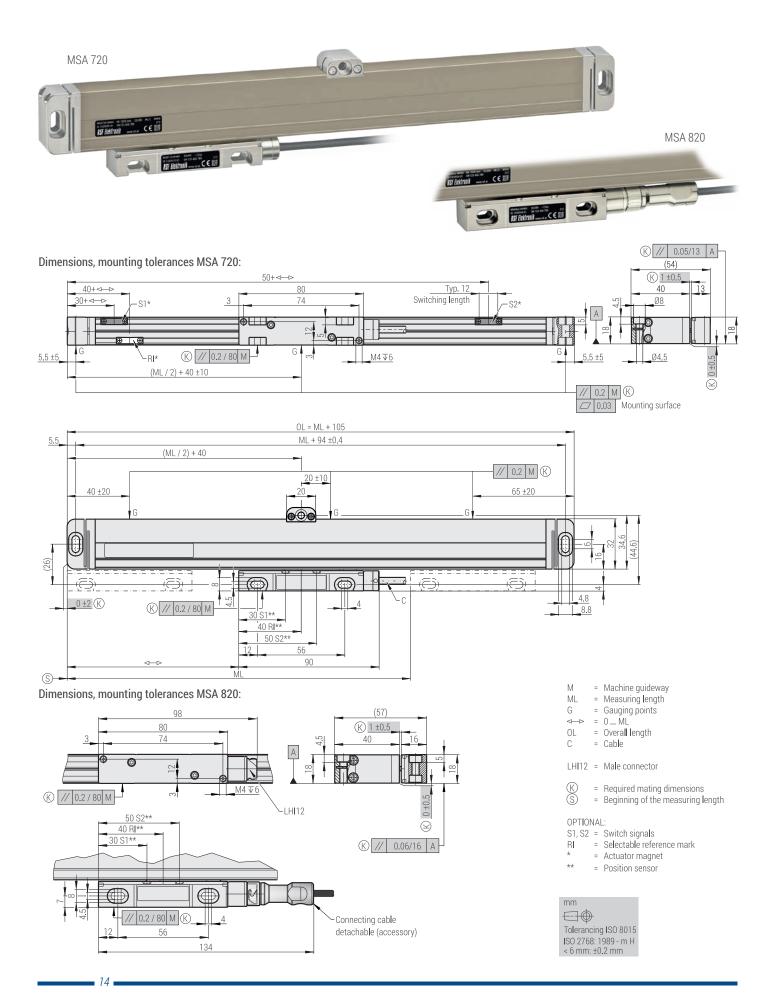
GRADUATION CARRIER


Standard measuring lengths (ML): [mm]	ns (ML): [mm] 70, 120, 170, 220, 270, 320, 370, 420, 470, 520, 570, 620, 670, 720, 770, 820, 870, 920, 970, 1040, 1140, 1240 (other measuring lengths on request)					
Graduation carrier	• Glass scale ($\alpha \approx 8.5 \times 10^{-6}$ /K), grating period: 20 μ m					
Graduation carrier	• Glass ceramic scale ($\alpha \approx 0 \times 10^{-6}$ /K), grating period: 20 µm					
	 ±5 μm/m 					
Accuracy grades (at 20 °C)	■ ±3 µm/m					
Location of the reference marks (RI):	Distance-coded reference marks					
	One reference mark in the middle of the ML					
	 Up to ML 970 mm: 35 mm from left and right; from ML 1040 mm: 45 mm from left and right 					
Required moving force	 With standard sealing lips (NBR): < 2.0 N 					
Environmental protection EN 60529	• With standard sealing lips (NBR): IP 53					
Mass scale spar (approx.)	 MSA 7xx , MSA 8xx: 75 g + 0.57 g/mm (ML) 					

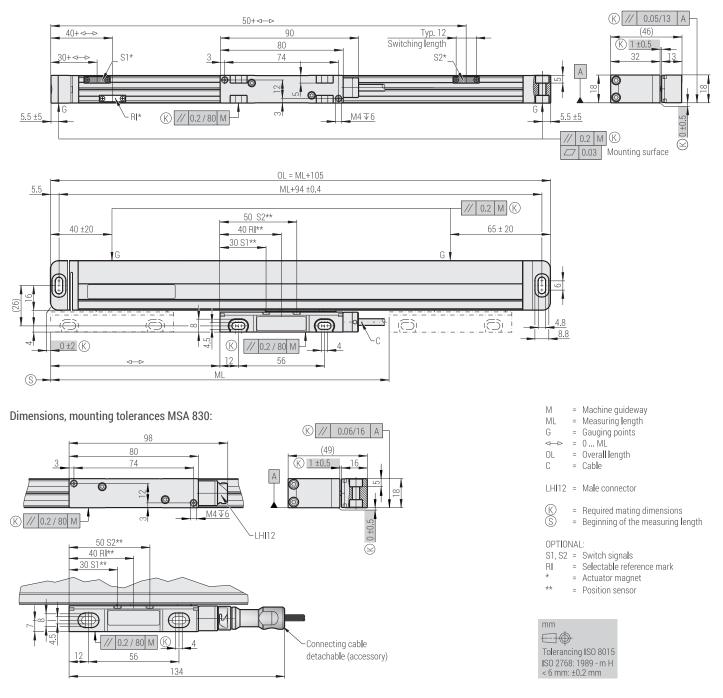
CONFORMITIES AND CERTIFICATIONS


RoHS	2011/65/EU, 2015/863/EU
EMV	2014/30/EU
Product-Certifications	UL, CSA, EN, IEC 61010-1

MSA 770, MSA 870



MSA 710, MSA 810


MSA 720, MSA 820

MSA 730, MSA 830

Dimensions, mounting tolerances MSA 730:

DISTRIBUTION CONTACTS

AUSTRIA Corporate Head Quarters	RSF Elektronik Ges.m.b.H.	A-5121 Tarsdorf 93	 +43 62 78 81 92-0 +43 62 78 81 92-79 	e-mail: info@rsf.at internet: www.rsf.at
BELGIUM	HEIDENHAIN NV/SA	Pamelse Klei 47 1760 Roosdaal	 +32 (54) 34 3158 +32 (54) 34 3173 	e-mail: sales@heidenhain.be internet: www.heidenhain.be
FRANCE	HEIDENHAIN FRANCE sarl	2 Avenue de la Christallerie 92310 Sèvres	 +33 1 41 14 30 00 +33 1 41 14 30 30 	e-mail: info@heidenhain.fr internet: www.heidenhain.fr
GREAT BRITAIN	HEIDENHAIN (GB) Ltd.	200 London Road Burgess Hill West Sussex RH15 9RD	 +44 1444 247711 +44 1444 870024 	e-mail: sales@heidenhain.co.uk internet: www.heidenhain.co.uk
ITALY	HEIDENHAIN ITALIANA S.r.I.	Via Giuseppe De Notaris 52 20128 Milan	 +39 02 27075-1 +39 02 27075-210 	e-mail: info@heidenhain.it internet: www.heidenhain.it
NETHERLANDS	HEIDENHAIN NEDERLAND B.V.	Copernicuslaan 34 6716 BM EDE	 +31 318-581800 +31 318-581870 	e-mail: verkoop@heidenhain.nl internet: www.heidenhain.nl
SPAIN	FARRESA ELECTRONICA S.A	Les Corts 36-38 08028 Barcelona	 +34 93 4 092 491 +34 93 3 395 117 	e-mail: farresa@farresa.es internet: www.farresa.es
SWEDEN	HEIDENHAIN Scandinavia AB	Rosterigränd 16 SE-117 61 Stockholm	 +46 8 531 933 50 +46 8 531 933 77 	e-mail: sales@heidenhain.se internet: www.heidenhain.se
SWITZERLAND	HEIDENHAIN (SCHWEIZ) AG	Vieristrasse 14 8603 Schwerzenbach	 +41 44 806 27 27 +41 44 806 27 28 	e-mail: verkauf@heidenhain.ch internet: www.heidenhain.ch
CHINA	DR. JOHANNES HEIDENHAIN (CHINA) Co., Ltd	No. 6, Tian Wei San Jie, Area A, Beijing Tianzhu Airport Industrial Zone Shunyi District, Beijing 101312	**** +86 10 80 42-0000	e-mail: sales@heidenhain.com.cn internet: www.heidenhain.com.cn
ISRAEL	MEDITAL Hi-Tech	36 Shacham St., P.O.Box 7772 4951729 Petach Tikva	 +972 0 3 923 33 23 +972 0 3 923 16 66 	e-mail: avi@medital.co.il internet: www.medital.co.il
JAPAN	HEIDENHAIN K.K.	Hulic Kojimachi Bldg., 9F 3-2 Kojimachi, Chiyoda-ku Tokyo, 102-0083	 +81 3 3234 7781 +81 3 3262 2539 	e-mail: sales@heidenhain.co.jp internet: www.heidenhain.co.jp
KOREA	HEIDENHAIN LTD.	75, Jeonpa-ro 24beon-gil, Manan-gu, Anyang-si 14087 Gyeonggi-do	 +82 31 380 5200 +82 31 380 5250 	e-mail: info@heidenhain.co.kr internet: www.rsf.co.kr
SINGAPORE	HEIDENHAIN PACIFIC PTE LTD.	51, Ubi Crescent 408593 Singapore	 +65 67 49 32 38 +65 67 49 39 22 	e-mail: info@heidenhain.com.sg internet: www.heidenhain.com.sg
TAIWAN	HEIDENHAIN CO., LTD.	No. 29, 33rd Road; Taichung Industrial Park Taichung 40768	 +886 4 2358 89 77 +886 4 2358 89 78 	e-mail: info@heidenhain.tw internet: www.heidenhain.com.tw
USA	HEIDENHAIN CORPORATION	333 East State Parkway Schaumburg, IL 60173-5337	🐵 +1 847 490 11 91	e-mail: info@heidenhain.com internet: www.heidenhain.us

Date 06/2025 Art.No.1340379-01 Doc.No. D1340379-02-A-01 Technical adjustments in reserve!

Linear and Angle Encoders Precision Graduations Certified acc. to ISO 9001 ISO 14001

🖂 A-5121 Tarsdorf 🔳 🐵 +43 (0)6278 / 8192-0 🔳 📼 +43 (0)6278 / 8192-79 🔳 e-mail: info@rsf.at 🔳 internet: www.rsf.at