

MSA 7x0, MSA 8x0 GEKAPSELTE LÄNGENMESSGERÄTE

INKREMENTELLE UND ABSOLUTE LÄNGEN- UND WINKELMESSGERÄTE, PRÄZISIONSTEILUNGEN

RSF Elektronik bietet als eines der weltweit führenden Unternehmen im Bereich elektronische Längen- und Winkelmessgeräte ein umfangreiches Portfolio, das nahezu alle vom Markt geforderten Ausführungen beinhaltet. Die typischen Auflösungen bzw. Messschritte reichen von einigen Mikrometern bis in den Nanometerbereich.

RSF Elektronik Stammsitz Tarsdorf, Österreich

RSF Elektronik Produktionsniederlassung Stříbro, Tschechische Republik

Ein weiteres Kernelement der Produktpalette sind hochgenaue und widerstandsfähige Teilungen die in Dünnschichttechnik hergestellt werden. Diese Präzisionsteilungen können auf Glas oder andere Trägersubstrate aufgebracht werden. Darüber hinaus entwickelt RSF Elektronik kundenspezifische Kabelsysteme für verschiedenste Anwendungsgebiete und Branchen, die in der Niederlassung Stříbro produziert werden. Um den hohen Qualitätsstandard des Unternehmens sicherzustellen, wurde ein umfassendes Qualitätssicherungs- und Umweltmanagement – zertifiziert nach DIN EN ISO 9001 sowie DIN EN ISO 14001 – installiert. Durch das flächendeckende Vertriebsnetz wird in praktisch allen Regionen eine optimale Kundenähe gewährleistet.

INHALTSVERZEICHNIS

ERKLARUNG LANGENMESSGERATE	Prinzipieller Aufbau und Funktion				
TECHNISCHE INFORMATIONEN	Genauigkeit	06			
	Anschlusskabel, Schirmverbindung, Stecker, Pin-Belegungen				
	Schnittstellen	08			
	Schaltsignal-Ausgang	09			
ÜBERSICHT	Übersicht, Auswahlhilfe	10			
	Technische Daten	11			
DIE LÄNGENMESSGERÄTE	MSA 770, MSA 870	12			
	MSA 770, MSA 870 MSA 710, MSA 810	13			
	MSA 720, MSA 820	14			
	MSA 730, MSA 830	15			
VERTRIEBSKONTAKTE	Adressen	16			

PRINZIPIELLER AUFBAU UND FUNKTION

Längenmessgeräte aus dem Hause RSF Elektronik sind universell einsetzbar. Sie eignen sich für manuelle Anwendungen, in besonderem Maße aber auch für geregelte Antriebssysteme.

Die Längenmessgeräte MSA 7 und MSA 8 sind wegen ihrer gekapselten Ausführung für den Einsatz in der Automatisierungs- und Fertigungstechnik prädestiniert. Zudem sind sie auch in den Branchen Metrologie, Druck und Robotik bestens geeignet, insbesondere für Anwendungen bei denen ein Schutz für Maßstab und Abtastung erforderlich ist.

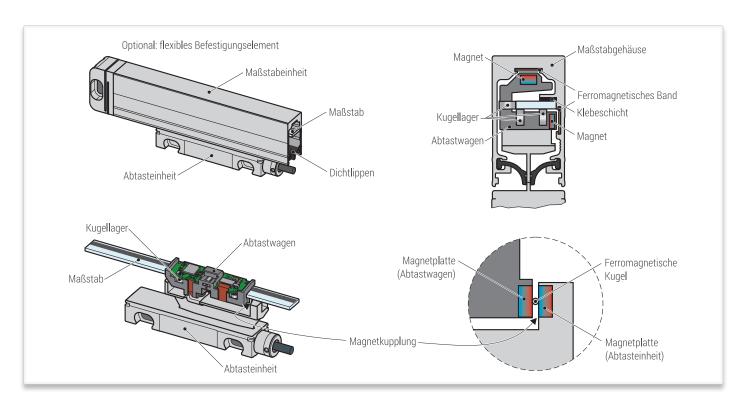
MSA 7 und MSA 8 sind eine konsequente Weiterentwicklung von bewährten Systemen und zeichnen sich durch verbesserte Konstruktionsdetails aus. Bei der Entwicklung hat RSF Elektronik größtes Augenmerk darauf gelegt, die Genauigkeit der Geräte zu optimieren. Dieses Ziel wurde durch ein perfektes Zusammenspiel von mehreren Einzelkomponenten erreicht. Darüber hinaus wurden dauerhaft beanspruchte Details optimiert, damit die hohe Systemgenauigkeit auch langfristig erhalten bleibt.

Längenmessgeräte setzen sich aus den Baugruppen Maßstabeinheit und Abtasteinheit zusammen. Vorzugsweise ist die Maßstabeinheit am beweglichen, die Abtasteinheit am starren Teil (Kabelführung) der Linearachse zu montieren

Die Maßstabeinheit besteht aus einem stabilen Maßstabgehäuse aus Aluminium, Befestigungselementen, einem Maßstab und Dichtlippen.

Tropfnasen am Maßstabgehäuse und speziell geformte Dichtlippen verhindern das Eindringen von Staub und Flüssigkeiten in die Maßstabeinheit. Die faserverstärkten **Dichtlippen** weisen eine hohe Abriebfestigkeit auf. Die hohe Steifigkeit der Einheit, gepaart mit dem ideal geformten Schwertbereich der Abtasteinheit, ermöglichen hohe Verfahrgeschwindigkeiten.

Der Maßstab ist mit einer flexiblen Klebeschicht im Maßstabgehäuse befestigt, welche die unterschiedliche Längenausdehnung zwischen Glas bzw. Glaskeramik und Aluminium kompensiert. Dadurch wird ein reproduzierbares thermisches Verhalten (Ausdehnung bzw. Verkürzung des Maßstabes zum Maßstabgehäuse bei Temperaturänderung) gewährleistet. Um den thermischen Nullpunkt an die jeweilige Messanforderung anzupassen, kann der Maßstab zusätzlich im Maßstabgehäuse fixiert werden. Ausdehnungsunterschiedezwischen Aluminium-Maßstabgehäuse und Maschinenschlitten werden mit flexiblen Befestigungselementen ausgeglichen. Die hohe Genauigkeit der Maßverkörperung ergibt sich durch einen ausgereiften lithografischen Prozess. Eine gleichbleibend präzise Reproduktion der Original-Maßverkörperung bildet die Grundlage für die Herstellung der hochgenauen Maßstäbe in RSF Elektronik Messgeräten.


Die Abtasteinheit ist je nach Gerätetyp mit fixem oder steckbarem Anschlusskabel erhältlich. Im Abtastwagen befinden sich eine Abtastplatte und die Optoelektronik zur Signalgenerierung. In der Abtasteinheit sind Hall-Sensoren integriert, die Schaltsignale für eine

zusätzliche Positionserfassung erzeugen, bzw. eine Auswahl der Referenzmarken ermöglichen. Sie werden von kundenseitig beliebig positionierbaren Magneten an der Maßstabeinheit aktiviert. Zudem befindet sich in der Abtasteinheit die Auswerteelektronik welche die Auswertesignale (z.B. 1Vss oder TTL) erzeugt.

Durch die Bauweise des Abtastwagens werden Fluchtungsabweichungen zwischen Maßstabeinheit und Maschinenführung ausgeglichen. Er rollt mit Hochpräzisions-Kugellagern am Maßstab und wird dabei von Magneten angedrückt, die auf die ferromagnetischen Bänder an der Maßstabeinheit wirken (Magnetführung). Dadurch wirken beim Anbau in den Toleranzgrenzen keine Kräfte, die Führungsteile der Linearachse beanspruchen könnten. Außerdem ist die Maßstabeinheit keiner Biegebelastung ausgesetzt.

Der Abtastwagen ist in Messrichtung an eine verschleiß- und wartungsfreie Magnetkupplung angebunden. Eine frei rollende, ferromagnetische Kugel zwischen zwei Magnetplatten ergibt eine in Messrichtung hochsteife, aber in allen übrigen Freiheitsgraden flexible Verbindung und minimiert den Umkehrfehler. Dadurch wird jede beliebige Abweichung (innerhalb der Toleranz) vom idealen Anbau des Messgerätes ausgeglichen.

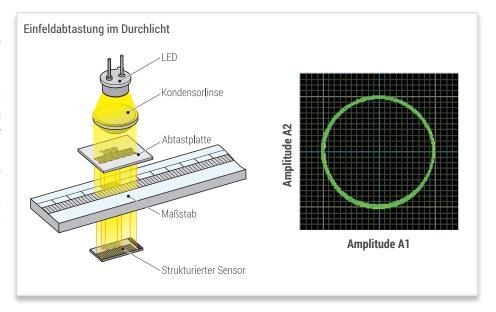
Die Kombination von Magnetführung und Magnetkupplung erlaubt großzügige Anbautoleranzen ohne negativen Einfluss auf die Messgenauigkeit. Somit erzielt man wesentliche Vorteile gegenüber herkömmlichen Technologien.

Als Maßverkörperung kommt jeweils eine hochgenaue Strichgitterteilung zum Einsatz. Je nach Gerätetyp wird als Trägermaterial Glas ($\alpha \approx 8,5 \times 10^{-6}$ /K) oder Glaskeramik ($\alpha \approx 0 \times 10^{-6}$ /K) verwendet.

Die Strichgitterteilung ist die fortlaufende Anordnung von Strichen und Lücken. Ein Strich und eine Lücke werden zusammen als Teilungsperiode (T) bezeichnet.

Parallel zur Strichgitterteilung befinden sich in zweiter Spur eine oder mehrere Referenzmarken (RI). Innerhalb der Messlänge ist eine beliebige Position möglich und zusätzliche Referenzmarken sind im Abstand von 50 mm frei wählbar.

Die Längenmessgeräte können auch mit abstandskodierten Referenzmarken ausgestattet werden. Nach dem Verfahren einer Messstrecke von maximal 20 mm steht bei diesen Typen die absolute Werkzeugposition zur Verfügung. Durch die optische Abtastung ist eine positionsgenaue, bidirektionale Referenzmarken-Auswertung gewährleistet.

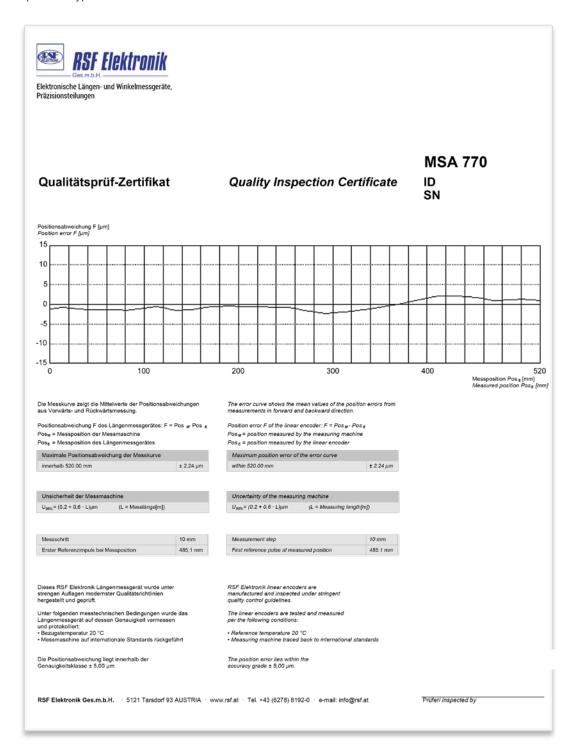

Maßverkörperung Teilungsperiode (T) Maßstab • Schema der Standard Referenzmarken: Referenzmarke 50 50 Schema der abstandskodierten Referenzmarken: Referenzmarke 10 - 13T 10 + 14T 10 - 14T 10 + 15T 10 - 15T 20 + 1T20 + 1T20 + 1T20 + 1T

Diese Längenmessgeräte arbeiten nach einem photoelektrischen Messprinzip mit einer Einfeldabtastung im Durchlicht.

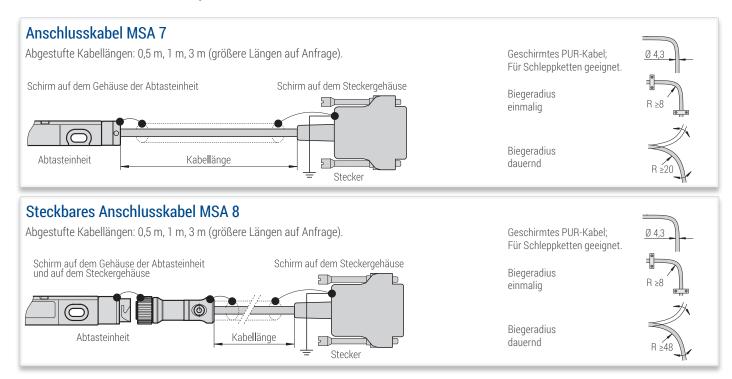
Das geregelte Licht einer Infrarot-LED wird von einer Kondensorlinse parallel gerichtet, tritt durch die Gitter der Abtastplatte und des Maßstabes und erzeugt auf dem strukturierten Sensor eine periodische Intensitätsverteilung.

Der Sensor erzeugt sinusförmige Signale höchster Güte, die sich gegen allfällige Verunreinigungen – die trotz aller technischen Vorkehrungen nie völlig auszuschließen sind – weitgehend unempfindlich zeigen.

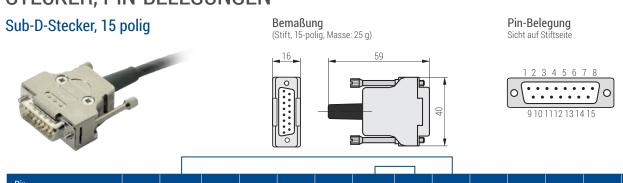
Die Regelung der LED stellt eine gleichbleibende Signalamplitude sicher, die sowohl bei Temperaturschwankungen als auch im Langzeitbetrieb Stabilität garantiert.


GENAUIGKEIT

Die Genauigkeit der Längenmessgeräte ist in Klassen unterteilt und mit einer "± Toleranz" in µm/m angegeben (z.B. ±5 µm/m).

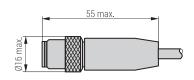

Die Genauigkeit bezieht sich auf einen beliebigen Meter innerhalb der Messlänge. Bei Messlängen bis 1000 mm bezieht sich diese Angabe auf die Messlänge.

Um die beste Messgenauigkeit zu erreichen, ist es notwendig, das Messgerät möglichst nahe an der Messebene zu montieren und parallel zur Maschinenführung auszurichten.


Beispiel einer typischen Messkurve:

ANSCHLUSSKABEL, SCHIRMVERBINDUNG

STECKER, PIN-BELEGUNGEN



Pin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Spannungssignale 1 Vss	Belegt	0 V Sensor	Belegt	RI-	A2-	A1-	V+ Sensor	V+	0 V	S1 *	S2*	RI+	A2+	A1+	nc
TTL-Signale	Belegt	0 V Sensor	ŪS	RI	T2	T1	V+ Sensor	V+	0 V	S1 *	S2 *	RI	T2	T1	nc

M12 Rundsteckverbinder, 12 polig nach IEC 61076-2-101 LM012-Gxx-A

Bemaßung (Stift, 12-polig, Masse: ca. 15 g) Pin-Belegung Sicht auf Stiftseite

3 2 10
4
11 5
$6 {7} {12} 8$

Pin	1	2	3	4	5	6	7	8	9	10	11	12
Spannungssignale 1 Vss	V+	A1-	A2+	A2-	S2 *	Belegt	RI+	RI-	Belegt	A1+	S1 *	0 V
TTL-Signale	V+	T1	T2	T2	S2*	ŪS	RI	RI	Belegt	T1	S1 *	0 V

- Sensor: Die Sensor-Pins sind im Steckergehäuse auf die jeweilige Spannungsversorgung gebrückt.
- * Bei Ausführung ohne Schaltsignale (Version K) = nc.
- Schirm ist mit dem Steckergehäuse verbunden.
- Pins oder Litzen, die mit "belegt" oder "nc" gekennzeichnet sind, dürfen kundenseitig nicht verwendet werden.

SCHNITTSTELLEN

SINUSFÖRMIGE SPANNUNGSSIGNALE 1 Vss

(Darstellung in "positiver Zählrichtung")

Zwei sinusförmige Spannungssignale A1 und A2 und ein Referenzimpuls (jeweils mit Invertierung).

Spannungsversorgung: +5 V ±10 %, max. 150 mA (ohne Last) Spursignale (Differenzspannung A1+zu A1-bzw. A2+zu A2-):

Signalamplitude 0,6 Vss bis 1,2 Vss; typisch 1 Vss

(mit Abschlusswiderstand Zo = 120 Ω zwischen A1+ zu A1- bzw. A2+ zu A2-)

Referenzimpuls (Differenzspannung RI+zu RI-):

Rechteckförmiger Puls mit einer Amplitude von 0,5 bis 0,9 V; typisch 0,7 V (mit Abschlusswiderstand Zo = 120Ω zwischen RI+ zu RI-)

Vorteil:

Hohe Ausgangsfrequenzen auch bei großen Kabellängen.

RECHTECKSIGNALE

(Darstellung in "positiver Zählrichtung")

Über integrierte Interpolationsschaltkreise (5-, 10-, 25- oder 50fach Unterteilung) werden die Sinussignale in zwei um 90° phasenverschobene Rechtecksignale umgewandelt. Diese Signale sind nicht unterteilbar. Die Rechtecksignale werden über Line Driver RS 422 Standard im Gegentakt "differential" ausgegeben.

Ein Messschritt ist der Messweg, der dem Abstand zwischen zwei Flanken der beiden Rechtecksignale entspricht. Die Steuerungselektronik muss so ausgelegt sein, dass sie jede Flanke der Rechteckimpulse erfasst. Der Flankenabstand amin ist in den technischen Daten angegeben. Er bezieht sich auf eine Messung am Interpolator-Ausgang. Laufzeitunterschiede im Line Driver, Kabel und Line Receiver vermindern den Flankenabstand.

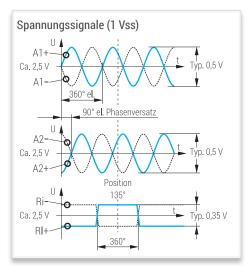
Laufzeitunterschiede:

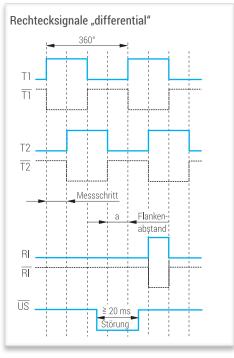
Line Driver: max. 10 ns Kabel: 0,2 ns/m

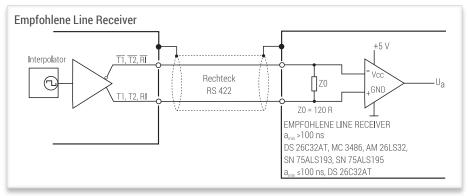
Line Receiver: max. 10 ns (bezogen auf die empfohlenen Line Receiver)

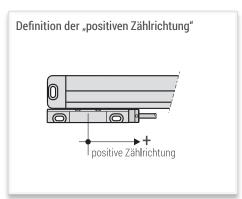
Die Steuerungselektronik muss in der Lage sein, den entstehenden Flankenabstand verarbeiten zu können, um Zählfehler zu vermeiden.

Beispiel:

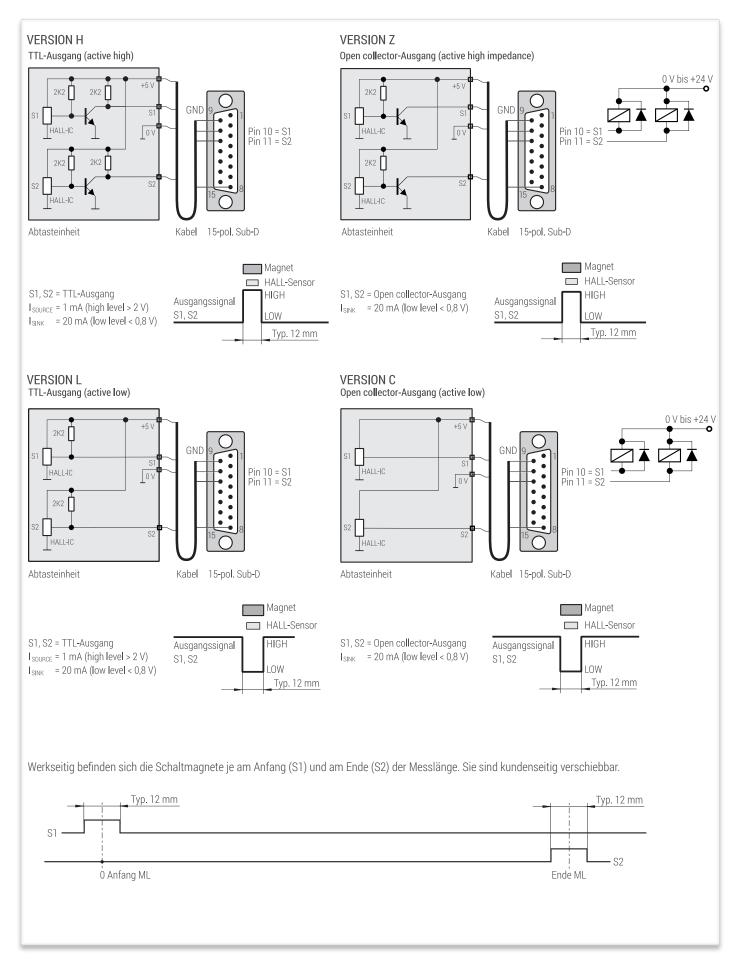

 a_{min} = 125 ns, 10 m Kabel


125 ns - 10 ns - 10 x 0,2 ns - 10 ns = 103 ns


Spannungsversorgung: +5 V ±10 %, max. 180 mA (ohne Last)


Vorteile:

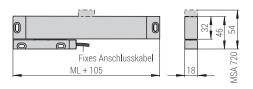
- Störsichere Signale
- Keine zusätzliche Unterteilungselektronik nötig



SCHALTSIGNAL-AUSGANG

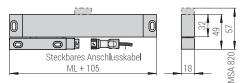
ÜBERSICHT, AUSWAHLHILFE

Längenmessgeräte MSA 7x0 sind standardmäßig mit einem fixen Anschlusskabel ausgestattet.


Alternativ werden die Längenmessgeräte MSA 8x0 mit einem steckbaren Anschlusskabel angeboten.

Alle Modelle zeichnen sich durch ein besonders gutes Temperaturverhalten aus. Flexible Befestigungselemente an der Maßstabeinheit gleichen die Längenausdehnung bzw. -verkürzung, die infolge von Temperaturschwankungen an Maschinen auftreten, reproduzierbar aus.

Mit einem fixen Befestigungselement (links, mittig oder rechts) wird ein entsprechender Bezugspunkt (thermischer Fixpunkt) definiert. Darüber hinaus ist es möglich, den Maßstab innerhalb des Profils zu fixieren.

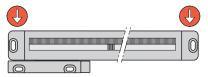

MSA 7X0

- Kleiner Profilquerschnitt
- Max. Messlänge: 1240 mm
- Fixes Anschlusskabel
- Systemhöhe: 46 mm bzw. 54 mm

MSA 8X0

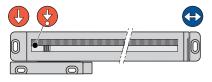
- Kleiner Profilquerschnitt
- Max. Messlänge: 1240 mm
- Steckbares Anschlusskabel
- Systemhöhe: 49 mm bzw. 57 mm

= Fixes Befestigungselement



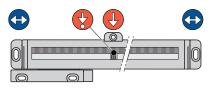
= Flexibles Befestigungselement = Zusätzliche Fixpunkt-Befestigung des Maßstabes

MSA X70


- Montage-Bohrungen an den Enden
- Fixe Befestigungselemente

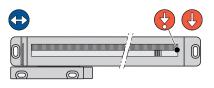
MSA 770, MSA 870 Seite 12

MSA X10


- Montage-Fixpunkt links
- Flexibles Befestigungselement rechts

Seite 13 MSA 710, MSA 810

MSA X20


- Montage-Fixpunkt mittig
- Flexibles Befestigungselement links und rechts

MSA 720, MSA 820 Seite 14

MSA X30

- Montage-Fixpunkt rechts
- Flexibles Befestigungselement links

MSA 730, MSA 830

Seite 15

TECHNISCHE DATEN MSA 7x0, MSA 8x0

ABTASTEINHEIT

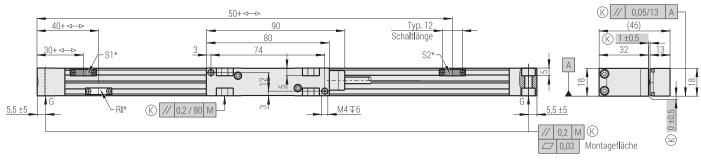
Gerätetyp	MSA 7x0 MSA 8x0	MSA 7x0 MSA 8x0	MSA 7x0 MSA 8x0	MSA 7x0 MSA 8x0	MSA 7x0 MSA 8x0
Schnittstelle	\sim 1 Vss	л TTLx5	√ TTLx10	JT. TTLx25	J TTLx50
Messschritt	Je nach externer Unterterteilung	1,0 µm	0,5 μm	0,2 μm	0,1 μm
Signalperiode	20 μm				
Integrierte Interpolation		5fach	10fach	25fach	50fach
Max. Verfahrgeschwindigkeit	2,0 m/s	2,0 m/s	1,96 m/s	0,78 m/s	0,78 m/s
Max. Ausgangsfrequenz	100 kHz				
Flankenabstand a _{min}		250 ns	250 ns	250 ns	125 ns
Elektrischer Anschluss	Kabel, 0,5 m, 1 m oder	3 m mit Sub-D-Stecker	15-pol. oder M12-Steck	ker 12-pol.	
Spannungsversorgung		nnungssignale \sim 1 Vs iber Line Driver $ ightharpoonup$:	ss: +5 V ±10 % +5 V ±10 %		
Leistungsaufnahme max.		nnungssignale \sim 1 Vs iber Line Driver $ ightharpoons$:	ss: 825 mW (ohne La 990 mW (ohne La	*	
Stromaufnahme typ.	· .	nnungssignale \sim 1 Vs iber Line Driver $ ightharpoonup$:	ss: 150 mA (ohne Las 180 mA (ohne Las	,	
Vibration 55 Hz – 2000 Hz Schock 8 ms	100 m/s ² 200 m/s ²				
Arbeitstemperatur Lagertemperatur	0 °C bis 50 °C -20 °C bis 70 °C				
Masse Abtasteinheit	MSA 7x0: 50 g (ohMSA 8x0: 65 g (ohAnschlusskabel: 3	ne Kabel)	Stecker: 28 g, M12-Stec	ker: 15 g	

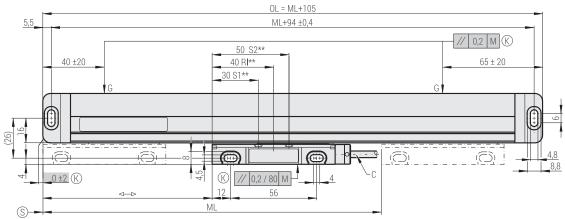
MAßVERKÖRPERUNG

Standardmesslängen (ML): [mm]	70, 120, 170, 220, 270, 320, 370, 420, 470, 520, 570, 620, 670, 720, 770, 820, 870, 920, 970, 1040, 1140, 1240 (andere Messlängen auf Anfrage)
MaQuarkärnarung	■ Glasmaßstab (α ≈ 8,5 x 10 ⁻⁶ /K), Teilungsperiode: 20 μm
Maßverkörperung	■ Glaskeramik-Maßstab ($\alpha \approx 0 \times 10^{-6}$ /K) , Teilungsperiode: 20 μ m
Genauigkeitsklassen (bei 20 °C)	■ ±5 µm/m
Geriadigkeitskiasseri (bei 20°6)	■ ±3 µm/m
	Abstandskodierte Referenzmarken
Lageposition der Referenzmarke (RI):	Eine Referenzmarke in der Mitte der Messlänge
	Bis Messlänge 970 mm: 35 mm von links und rechts; ab Messlänge 1040 mm: 45 mm von links und rechts
Benötigte Kraft zum Bewegen der Abtasteinheit	Mit Standard-Dichtlippen (NBR): < 2,0 N
Schutzart EN 60529	Mit Standard-Dichtlippen (NBR): IP 53
Masse Profil (ca.)	■ MSA 7xx , MSA 8xx: 75 g + 0,57 g/mm (ML)

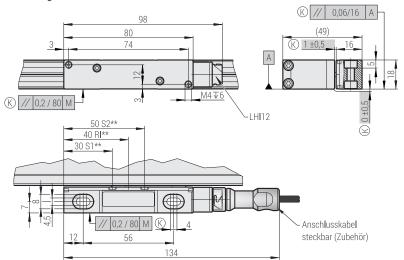
KONFORMITÄTEN UND ZERTIFIZIERUNGEN

RoHS	2011/65/EU, 2015/863/EU
EMV	2014/30/EU
Produkt-Zertifizierungen	UL, CSA, EN, IEC 61010-1


11



MSA 770, MSA 870



Abmessungen, Anbautoleranzen MSA 770:

Abmessungen, Anbautoleranzen MSA 870:

= Maschinenführung = Mess**l**änge

ML G = Messpunkte

= 0 ... ML \triangleleft = Gesamtlänge = Anschlusskabel OL

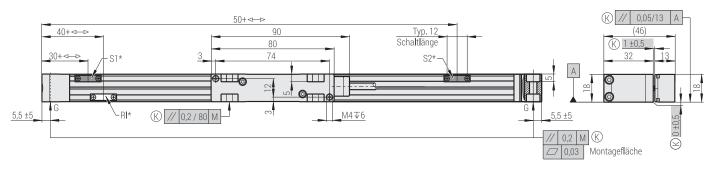
LHI12 = Stecker

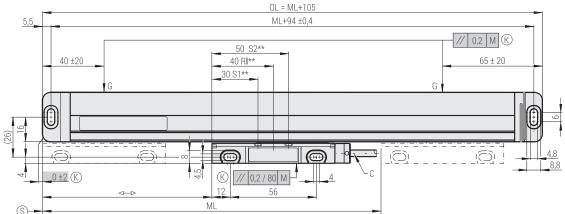
= Kundenseitige Anbaumaße= Beginn der Messlänge

OPTIONEN:

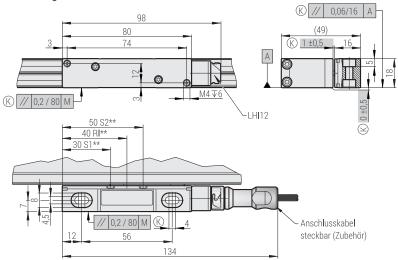
S1, S2 = Schaltsignale
RI = Wählbare Referenzmarke RI

= Schaltmagnet


= Sensorposition



MSA 710, MSA 810



Abmessungen, Anbautoleranzen MSA 710:

Abmessungen, Anbautoleranzen MSA 810:

= Maschinenführung = Messlänge

ML = Messpunkte G

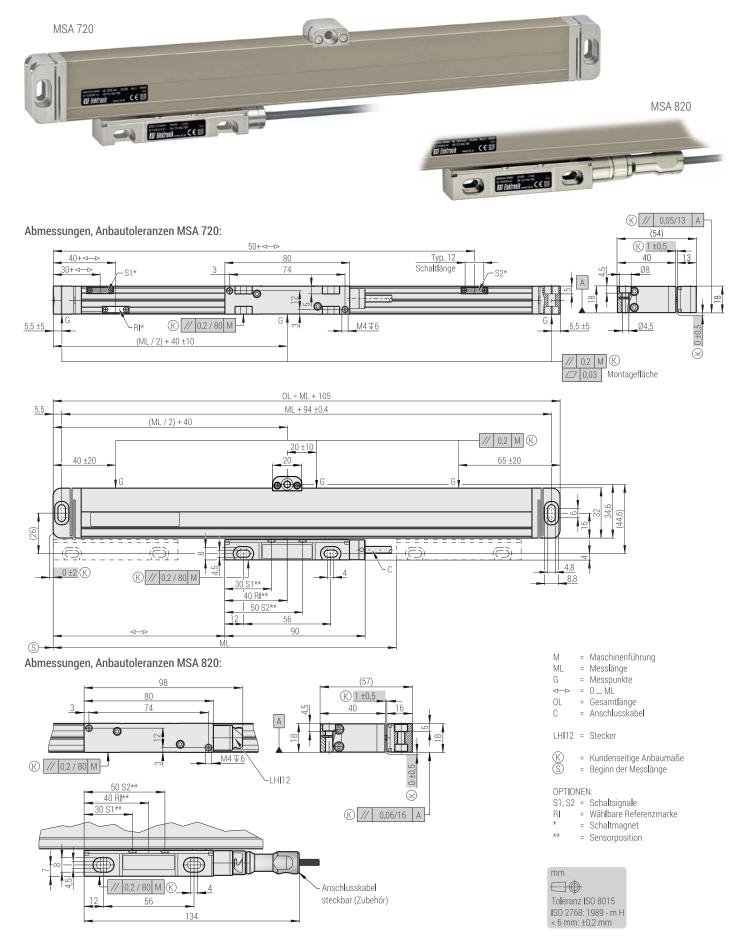
= 0 ... ML = Gesamtlänge = Anschlusskabel OL

LHI12 = Stecker

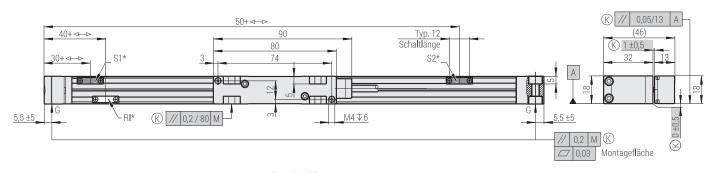
= Kundenseitige Anbaumaße= Beginn der Messlänge

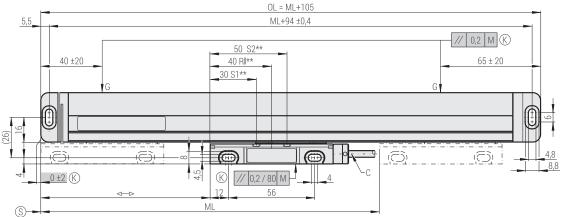
OPTIONEN:

S1, S2 = Schaltsignale
RI = Wählbare Referenzmarke

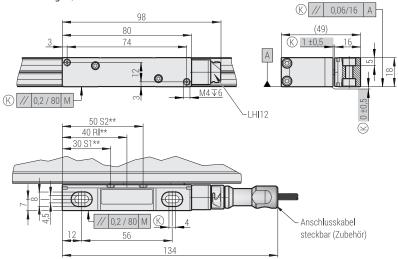

= Schaltmagnet

= Sensorposition


MSA 720, MSA 820



MSA 730, MSA 830



Abmessungen, Anbautoleranzen MSA 730:

Abmessungen, Anbautoleranzen MSA 830:

 Maschinenführung Messlänge Messpunkte ML

G = 0 ... ML = Gesamtlänge = Anschlusskabel OL

LHI12 = Stecker

= Kundenseitige Anbaumaße= Beginn der Messlänge

OPTIONEN:

S1, S2 = Schaltsignale
RI = Wählbare Referenzmarke
* = Schaltmagnet

= Sensorposition

VERTRIEBSKONTAKTE

AUSTRIA Stammsitz	RSF Elektronik Ges.m.b.H.	A-5121 Tarsdorf 93	** +43 62 78 81 92-0 ** +43 62 78 81 92-79	e-mail: info@rsf.at internet: www.rsf.at
BELGIEN	HEIDENHAIN NV/SA	Pamelse Klei 47 1760 Roosdaal	** +32 (54) 34 3158 ** +32 (54) 34 3173	e-mail: sales@heidenhain.be internet: www.heidenhain.be
FRANKREICH	HEIDENHAIN FRANCE sarl	2 Avenue de la Christallerie 92310 Sèvres	** +33 1 41 14 30 00 *** +33 1 41 14 30 30	e-mail: info@heidenhain.fr internet: www.heidenhain.fr
GROßBRITANNIEN	HEIDENHAIN (GB) Ltd.	200 London Road Burgess Hill West Sussex RH15 9RD	** +44 1444 247711 *** +44 1444 870024	e-mail: sales@heidenhain.co.uk internet: www.heidenhain.co.uk
ITALIEN	HEIDENHAIN ITALIANA S.r.I.	Via Giuseppe De Notaris 52 20128 Milan	** +39 02 27075-1 ** +39 02 27075-210	e-mail: info@heidenhain.it internet: www.heidenhain.it
NIEDERLANDE	HEIDENHAIN NEDERLAND B.V.	CopernicusIaan 34 6716 BM EDE	** +31 318-581800 *** +31 318-581870	e-mail: verkoop@heidenhain.nl internet: www.heidenhain.nl
SPANIEN	FARRESA ELECTRONICA S.A	Les Corts 36-38 08028 Barcelona	** +34 93 4 092 491 *** +34 93 3 395 117	e-mail: farresa@farresa.es internet: www.farresa.es
SCHWEDEN	HEIDENHAIN Scandinavia AB	Rosterigränd 16 SE-117 61 Stockholm	** +46 8 531 933 50 *** +46 8 531 933 77	e-mail: sales@heidenhain.se internet: www.heidenhain.se
SCHWEIZ	HEIDENHAIN (SCHWEIZ) AG	Vieristrasse 14 8603 Schwerzenbach	② +41 44 806 27 27 ►AXI +41 44 806 27 28	e-mail: verkauf@heidenhain.ch internet: www.heidenhain.ch
CHINA	DR. JOHANNES HEIDENHAIN (CHINA) Co., Ltd	No. 6, Tian Wei San Jie, Area A, Beijing Tianzhu Airport Industrial Zone Shunyi District, Beijing 101312	2 +86 10 80 42-0000	e-mail: sales@heidenhain.com.cn internet: www.heidenhain.com.cn
ISRAEL	MEDITAL Hi-Tech	36 Shacham St., P.O.Box 7772 4951729 Petach Tikva	** +972 0 3 923 33 23 *** +972 0 3 923 16 66	e-mail: avi@medital.co.il internet: www.medital.co.il
JAPAN	HEIDENHAIN K.K.	Hulic Kojimachi Bldg., 9F 3-2 Kojimachi, Chiyoda-ku Tokyo, 102-0083	** +81 3 3234 7781 ** +81 3 3262 2539	e-mail: sales@heidenhain.co.jp internet: www.heidenhain.co.jp
KOREA	HEIDENHAIN LTD.	75, Jeonpa-ro 24beon-gil, Manan-gu, Anyang-si 14087 Gyeonggi-do	** +82 31 380 5200 *** +82 31 380 5250	e-mail: info@heidenhain.co.kr internet: www.rsf.co.kr
SINGAPUR	HEIDENHAIN PACIFIC PTE LTD.	51, Ubi Crescent 408593 Singapore	** +65 67 49 32 38 *** +65 67 49 39 22	e-mail: info@heidenhain.com.sg internet: www.heidenhain.com.sg
TAIWAN	HEIDENHAIN CO., LTD.	No. 29, 33rd Road; Taichung Industrial Park Taichung 40768	** +886 4 2358 89 77 ** FAX** +886 4 2358 89 78	e-mail: info@heidenhain.tw internet: www.heidenhain.com.tw
USA	HEIDENHAIN CORPORATION	333 East State Parkway Schaumburg, IL 60173-5337	2 +1 847 490 11 91	e-mail: info@heidenhain.com internet: www.heidenhain.us

Ausgabe 06/2025 ■ Art.Nr.1340378-01 ■ Dok.Nr. D1340378-02-A-01 ■ Technische Änderungen vorbehalten!

Elektronische Längen- und Winkelmessgeräte

Zertifiziert nach ISO 9001 ISO 14001

