
Information Model
OPC UA NC Server

Core - Version 1.05

English (en)
10/2023

Application-Oriented Monitoring and Control |

Application-Oriented Monitoring and Control
A variety of industrial applications can be realized with the information, functions, and events provided by the
HEIDENHAIN OPC UA NC Server. Below you will find a few typical applications that can be implemented based on the
Core Information Model described in this document.

Production Data Acquisition
Software applications for process data acquisition (PDA) provide a real-time view of the production status and
productivity of your machines.
Is the current job still running, or was there an interruption? How long did it take to run the job?
For questions like these, your PDA application requires information from your machine's CNC control. The
HEIDENHAIN OPC UA NC Server reliably delivers the required information, thus providing a foundation for efficient
process data acquisition. The analysis and presentation of your production data are key factors in attaining process
transparency and optimization.

Machine Messages
Stay informed by knowing when to change out a tool at the end of its service life or when to refill critical fluid levels to
avoid program interruptions.
PDA applications use machine messages to notify you of important events within your manufacturing environment.
These messages are recorded by the HEIDENHAIN OPC UA NC Server and forwarded to the OPC UA application,
allowing you to respond quickly to machine downtime or avoid it completely.

Automation
Efficiently automated machine tools minimize costs and ensure high availability during production. But constant
pricing pressure and growing workpiece variety represent major challenges for automation solutions.
Should the CAM system automatically transfer the program to the machine? Should the tool presetter automatically
send the tool geometry to the machine?
The HEIDENHAIN OPC UA NC Server provides useful functions for every application: easy transfer of NC programs,
control of the current program, transmission of tool data and automatic synchronization with a database.

Tool Data Management
Machine tools use specially designed tools to remove material from workpieces. For different production
technologies different types of tools are used. Depending on the tool type, the machine tool requires a different set
of tool data. Since the typical milling machine can nowadays often also turn and grind, the variety of tool data has
increased greatly.
To enable you to manage the tool data of your CNC machines remotely, HEIDENHAIN has integrated a digital
description of tool data directly in the information model.
Which tool data is relevant for a thread milling cutter? What data describe the wear of a tool? Can the new 3D tool
model be used for collision monitoring and material removal simulation?
You can read out answers to these questions directly from the HEIDENHAIN OPC UA NC Server.

Machine-Specific Functionality
Whether you record your production data, provide maintenance personnel with current machine messages, or
automate your machine, the HEIDENHAIN OPC UA NC Server gives you proven information models to make your job
easier.
The fast and flexible way to more information: The machine manufacturer can also extend the HEIDENHAIN OPC UA
NC Server, giving you access to additional sensors, machine subsystems, or values from PLC programs. This allows
you to feed your applications with more than raw data, including units of measure, limit values, and other information
from your machine through OPC UA.

HEIDENHAIN | OPC UA Information Model | 10/2023 2

Content

Content

1 Introduction... 11

1.1 Scope... 12

1.2 Reference Documents.. 13

1.3 Associated HEIDENHAIN CNC Controls.. 15

2 Fundamentals.. 17

2.1 Introduction to OPC Unified Architecture... 18

2.2 Information Modeling in OPC UA.. 20

2.3 Abbreviations and Terms... 24

2.4 Conventions used in this document... 25

3 Core Information Model Overview... 29

3.1 Core Types Overview.. 30

3.2 Machine Instance... 31

3.3 General Information about the Machine... 32

3.4 NC State Machine.. 33

3.5 Machining Channel... 35

3.6 NC Program Execution Monitoring and Control.. 37

3.7 Errors, Warnings and Notifications... 41

3.8 Operating Times of the Machine.. 44

3.9 File System Access.. 45

3.10 Tool Data Management.. 48

4 OPC UA ObjectTypes... 55

4.1 MachineType.. 56

4.2 NCStateMachineType... 59

4.3 InterfaceType... 62

4.4 ErrorInterfaceType.. 63

HEIDENHAIN | OPC UA Information Model | 10/2023 3

Content

4.5 ErrorEntryType.. 64

4.6 ErrorEntryListType.. 66

4.7 OperatingTimesType.. 67

4.8 ControlInfoType.. 68

4.9 OperatorMachineInfoType.. 69

4.10 ManufacturerInfoType.. 70

4.11 SoftwareVersionListType.. 72

4.12 ChannelType... 74

4.13 ChannelListType... 78

4.14 ProgramType.. 79

4.15 NCProgramStateMachineType.. 81

4.16 ToolDataManagementType... 87

4.17 ToolDataRepresentationType.. 111

4.18 ToolDataCategoryType... 114

4.19 ToolDataItemType.. 115

4.20 ToolTypeCategoryType... 117

4.21 ToolTypeDescriptionType... 118

4.22 LocalToolDataSetType.. 119

4.23 ServiceFileInterfaceType.. 121

5 OPC UA EventTypes.. 127

5.1 ErrorEventType... 128

5.2 ErrorClearedEventType... 130

5.3 ErrorOccurredEventType... 131

5.4 NCTransitionEventType.. 132

5.5 ExecutionMessageEventType... 133

5.6 ToolChangedEventType.. 134

5.7 ToolDataSetModificationEventType.. 135

5.8 BaseToolEventType.. 136

HEIDENHAIN | OPC UA Information Model | 10/2023 4

Content

5.9 ToolLockedEventType... 137

6 OPC UA VariableTypes.. 139

6.1 CutterLocationArrayType.. 140

6.2 ProgramPositionArrayType... 141

7 OPC UA DataTypes.. 143

7.1 ErrorClassType... 144

7.2 ErrorGroupType.. 145

7.3 ErrorLocationType.. 146

7.4 NCOperatingMode.. 147

7.5 ToolRecordModificationType.. 148

7.6 ToolDataSynchronizationStatusType.. 149

7.7 CutterLocationDataType... 150

7.8 ProgramPositionDataType.. 151

7.9 ToolRecordModificationDataType... 152

7.10 ToolRecordIdentifierDataType.. 153

7.11 MagazinePocketIdentifierDataType.. 154

8 Namespaces.. 155

8.1 Namespace Metadata... 156

8.2 Handling of OPC UA Namespaces.. 157

9 Machine File System Access... 159

9.1 Introduction.. 160

9.2 FileDirectoryType.. 164

9.3 FileType.. 167

9.4 Warnings and Important Hints.. 169

10 Extensions of the Machine Manufacturer.. 171

10.1 Introduction.. 172

HEIDENHAIN | OPC UA Information Model | 10/2023 5

Content

10.2 Manufacturer Extensions.. 173

10.3 Information for Machine Manufacturers... 175

11 Lists... 177

11.1 List of Tables... 178

11.2 List of Figures.. 183

Annex.. 185

Annex A: Tool Data Reference... 186

HEIDENHAIN | OPC UA Information Model | 10/2023 6

Terms of Use |

Terms of Use
Below are the terms of use of this document (information model). The product documentation for the HEIDENHAIN
OPC UA NC Server is found in the Setup, Testing and Running NC Programs User’s Manual or Setup and Program Run
User’s Manual for the specific control model.

These terms of use apply solely to the abovementioned information model and do not grant any rights of use for
any other documents referenced herein.
The content of this document has been checked for accuracy with respect to the corresponding software.
Nevertheless, deviations cannot be excluded. Therefore, HEIDENHAIN does not guarantee the complete accuracy,
correctness, or completeness of this content.
The user of this document, generally the application engineer, is solely responsible for the correct and proper
functioning of any industrial software application created by him or her. Likewise, the application engineer is
solely responsible for testing any such industrial software application in conjunction with the corresponding
HEIDENHAIN control software and for verifying that any such industrial software application is free of errors.
The copyright of this document is held solely by DR. JOHANNES HEIDENHAIN GmbH.
This document may be distributed via computer systems, printed, or copied only if not modified.

WARRANTY AND LIABILITY DISCLAIMERS
WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. HEIDENHAIN MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD
TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO
EVENT SHALL HEIDENHAIN BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE,
OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Any application examples provided herein are solely intended to provide an overview of typical functionalities. These
application examples are neither binding nor complete, nor do they represent specific user solutions or requirements.
The user is solely responsible and liable for the quality and performance of software developed using this document.

HEIDENHAIN | OPC UA Information Model | 10/2023 7

About this Document |

About this Document
Where to Start?
Depending on your interest in the HEIDENHAIN OPC UA NC Server and the Core Information Model, the questions
and statements listed here may quickly lead you to the relevant parts of the document.

Which HEIDENHAIN CNC controls have an OPC UA NC Server?
See 1.3 "Associated HEIDENHAIN CNC Controls", Page 15.
I want to get an overview about the interface functionality and components of the Core Information Model.
Start with 3 "Core Information Model Overview", Page 29.
OPC UA information modeling concepts are new to me. How do I read this specification?
2.2 "Information Modeling in OPC UA" briefly describes the concepts, 2.4 "Conventions used in this document"
explains how to read the following type definitions. Not all details are needed for an initial understanding of the
Core Information Model. Use these chapters as a reference when reading the following chapters.
I have a machine with OPC UA NC Server in front of me. What do I need to do to get the server up and running the
first time?
The control's OPC UA Connection Assistant application supports you in checking the existing conditions and
setting up a connection to the server. The application can be found in the HEROS operating system settings
menu.
See also "User’s Manual: Setup, Testing and Running NC Programs, or Setup and Program Run", Page 13, for
information about the existing conditions. The respective manual for your specific control model and software
version describes it in more detail.

Document History
Table 1: Document Versions

Version Date Reason Comments

1.00 December 11, 2019 Release First version of the Core Information Model

1.01 November 27, 2020 Release Core Information Model extension: File
System Access

1.02 November 29, 2021 Release Core Information Model extension:
Manufacturer Extensions

1.03 October 27, 2022 Release Core Information Model extension: Tool
Data Management

1.04 March 22, 2023 Release Minor Core Information Model extension,
Annex update

1.05 October 12, 2023 Release Core Information Model extension: Service
files and 3D model data for tools, Annex
update

Have you found any errors or would you like to suggest a new feature?
We are continuously striving to improve our documentation and the server for you. Please help us by sending your
suggestions to the following e-mail address:
OPCUA-NC-docu@heidenhain.de

HEIDENHAIN | OPC UA Information Model | 10/2023 8

About this Document |

What's New?

Extensions of the Core Information Model from Version 1.04 to Version 1.05
3D Model Data for Tools and Tool Carrier Kinematics
Information Model Extensions

4.16 "ToolDataManagementType" has a new optional component Validation, which has a component
3DModels. This component provides information and functionality for tool data items which refer to 3D model
files.
4.19 "ToolDataItemType" has two new optional variables FileLocation and FileLocationManufacturer. They
specify storage locations of associated files.

More Information
3D Model Files for Tools in 3.10 "Tool Data Management" provides an overview of the new elements and
functionality for 3D model data for tools. For example, how to check whether 3D models of the tool or tool
carrier can be used for collision monitoring and material removal simulation on the control.
"3D Model Files for Tools: Validation Issues List", Page 190 contains a list of possible issues found during
validation of 3D model files.

Machine Diagnostics with ServiceFiles
Information Model Extensions

The new 4.23 "ServiceFileInterfaceType" provides a method to create service files of the machine.
4.1 "MachineType" has a new optional component Diagnostics with a component ServiceFiles of 4.23
"ServiceFileInterfaceType".

"Annex A: Tool Data Reference" has been updated according to the corresponding NC software version.
The new elements are supported by all products starting with the corresponding NC software versions listed under
Overview of Core Information Model Versions in 1.3 "Associated HEIDENHAIN CNC Controls". The availability and
use of 3D model files of tools and tool carriers for collision monitoring during program run and material removal
simulation depend on the software option Dynamic Collision Monitoring (DCM) or DCM version 2.

Extensions of the Core Information Model from Version 1.03 to Version 1.04
4.16 "ToolDataManagementType" has a new optional method GetAllToolNumbers. It provides a list of all tool
numbers that are present in the machine's tool memory.
"Annex A: Tool Data Reference" has been updated according to the corresponding NC software version.

The new elements are supported by all products starting with the corresponding NC software versions listed under
Overview of Core Information Model Versions in 1.3 "Associated HEIDENHAIN CNC Controls".

Extensions of the Core Information Model from Version 1.02 to Version 1.03
Tool Data Management
Information Model Extensions

4.1 "MachineType" has a new optional component ToolDataManagement of type 4.16 "ToolDataManagement-
Type". It describes the machine's available tool types, including their data items, and provides methods to
access the tool data.
The new 4.16 "ToolDataManagementType" includes instances of the newly added 4.17
"ToolDataRepresentationType" and 4.22 "LocalToolDataSetType".
To describe the semantics of the machine's tool data with the 4.17 "ToolDataRepresentationType", the
ObjectTypes 4.18 "ToolDataCategoryType" , 4.19 "ToolDataItemType", 4.20 "ToolTypeCategoryType" and 4.21
"ToolTypeDescriptionType" have been added.

HEIDENHAIN | OPC UA Information Model | 10/2023 9

About this Document |

The Enumerations 7.6 "ToolDataSynchronizationStatusType" and 7.5 "ToolRecordModificationType" as well
as the Structures 7.10 "ToolRecordIdentifierDataType", 7.11 "MagazinePocketIdentifierDataType" and 7.9
"ToolRecordModificationDataType" have been added.
The EventTypes 5.7 "ToolDataSetModificationEventType", 5.8 "BaseToolEventType" and 5.9
"ToolLockedEventType" have been added.
The 4.12 "ChannelType" has been extended by the optional component CurrentTool.

More Information
3.10 "Tool Data Management" provides an overview of the new tool data management functionality and related
types.
"Annex A: Tool Data Reference" contains a list of tool data items and tool types.
Terms in 2.3 "Abbreviations and Terms" defines tool and tool data related terms used in this document.

The new Tool Data Management is supported by all products starting with the corresponding NC software
versions listed under Overview of Core Information Model Versions in 1.3 "Associated HEIDENHAIN CNC
Controls".

Extensions and Changes of the Core Information Model from Version 1.01 to Version 1.02
Extensions of the Machine Manufacturer

4.1 "MachineType" has a new optional component: ManufacturerExtensions. Machine-specific objects
with variables are Organized by this object. OptionalPlaceholder elements represent the ObjectType and
VariableTypes that can occur. Concrete machine-specific objects and variables are defined by the machine
manufacturer.
Along with the 3.2 "Machine Instance" overview and the 4.1 "MachineType" type, chapter 10 "Extensions of the
Machine Manufacturer" provides information about this functionality.

The new Extensions of the Machine Manufacturer are supported by all products starting with the corresponding
NC software versions listed under Overview of Core Information Model Versions in 1.3 "Associated HEIDENHAIN
CNC Controls".
Description and behavior hints of 4.12 "ChannelType" override variables, 4.15 "NCProgramStateMachineType"
Start method, 4.9 "OperatorMachineInfoType" and 4.10 "ManufacturerInfoType" Image properties have been
improved.
Unused VariableTypes CutterLocationType and ProgramPositionType have been removed.

Extensions of the Core Information Model from Version 1.00 to Version 1.01
File System Access
Information Model Extensions

4.1 "MachineType" now has an optional component FileSystem providing access to the TNC and PLC partitions
of the machine's file system to transfer files to and from the machine following OPC UA Part 5 Annex C (using
FileType and FileDirectoryType).
The machining-channel-related types 4.12 "ChannelType", 4.14 "ProgramType" and 4.15 "NCProgramState-
MachineType" now have additional optional methods like SelectProgramByNodeId or a property like FileNodeId
to simplify the usage of their functionality in relation to the new FileSystem.

More Information
3.9 "File System Access" and 9.1 "Introduction": Machine's file system model overview and access-right
handling
9.3 "FileType" and 9.2 "FileDirectoryType": Overview, hints and annotations regarding the OPC UA standard
types FileType and FileDirectoryType to be used in a FileSystem.
9.4 "Warnings and Important Hints": Important and useful information regarding file system functionality usage
for OPC UA client developers

The new File System Access is supported by all products starting with the corresponding NC software versions
listed under Overview of Core Information Model Versions in 1.3 "Associated HEIDENHAIN CNC Controls".

HEIDENHAIN | OPC UA Information Model | 10/2023 10

1
Introduction

Introduction | Scope

1.1 Scope
This documentation describes the information models made available by the HEIDENHAIN OPC UA NC Server and is
intended for software developers for the development of modern industrial software.
The structure and concepts of this OPC UA information model specification are primarily derived from the public
domain document OPC UA Companion Specification Template by the OPC Foundation. (Client application developers
should have a basic understanding of OPC UA in order to understand and use this specification.)
Due to, for example, the platform independency of the open OPC UA standard, HEIDENHAIN does not provide an OPC
UA Client SDK. For general questions on how to implement a client application with a specific OPC UA Client SDK of
your choice, please refer to the manufacturer of the SDK.
This documentation describes the contents of the standard scope. Modification by the machine manufacturer may
influence the behavior of the control and the OPC UA NC Server. Any additions or modifications must be documented
by the machine manufacturer.

Core Information Model Specification
The HEIDENHAIN OPC UA NC Server Core Information Model is described in this document. The Core Information
Model defines an interface to HEIDENHAIN numeric control systems provided by the HEIDENHAIN OPC UA NC
Server.
The Core Information Model contains the basic contents and functions, such as the identification of the control, the
machine, their characteristics, and their specific version information.
This specification is intended to be extended in the future, so please ensure that you use the most recent version of
this document.
For technical questions regarding the Core Information Model, feel free to contact the HEIDENHAIN App-
Programming Helpline.

HEIDENHAIN OPC UA NC Server
The HEIDENHAIN OPC UA NC Server provides an interface between HEIDENHAIN NC systems and external
applications for machine-related information, monitoring, and control functions. The server is not a stand-alone
product or application: it is always part of numeric control software products from HEIDENHAIN.
References to other information about the software option HEIDENHAIN OPC UA NC Server or the HEIDENHAIN
controls can be found in 1.2.2 "HEIDENHAIN".
The HEIDENHAIN CNC control products for which the HEIDENHAIN OPC UA NC Server options are available, can be
found, for example, on the HEIDENHAIN website and in 1.3 "Associated HEIDENHAIN CNC Controls". This chapter
also contains information about the version of the Core Information Model supported by an OPC UA NC Server as
part of the related NC Software version.

HEIDENHAIN | OPC UA Information Model | 10/2023 12

Introduction | Reference Documents

1.2 Reference Documents

1.2.1 OPC Foundation
All referred documents are available for registered users on the website of the OPC Foundation as part of the
specification of OPC Unified Architecture.
The OPC Foundation additionally provides an OPC UA Online Reference of OPC UA specifications and information
models.

OPC UA Specification (starting with version 1.04)
OPC UA is a secure, reliable and platform-independent communication standard that is used for information
exchange in industrial applications. It is maintained by the OPC Foundation and published as the international
standard IEC 62541. More than a data transport layer, OPC UA aims to enable interoperability through the use of
information modeling and web services.
After version 1.04 each part of the specification is published individually. For updated and new parts published until
March 2022, at least version 1.05 applies.
Referenced OPC UA Specification Parts

OPC UA Part 1: OPC Unified Architecture - Part 1: Overview and Concepts
OPC UA Part 2: OPC Unified Architecture - Part 2: Security Model
OPC UA Part 3: OPC Unified Architecture - Part 3: Address Space Model
OPC UA Part 4: OPC Unified Architecture - Part 4: Services
OPC UA Part 5: OPC Unified Architecture - Part 5: Information Model
OPC UA Part 6: OPC Unified Architecture - Part 6: Mappings
OPC UA Part 7: OPC Unified Architecture - Part 7: Profiles
OPC UA Part 8: OPC Unified Architecture - Part 8: Data Access
OPC UA Part 16: OPC Unified Architecture - Part 16: State Machines
OPC UA Part 18: OPC Unified Architecture - Part 18: Role-Based Security
OPC UA Part 20: OPC Unified Architecture - Part 20: File Transfer

OPC UA Companion Specification Template
The OPC UA Companion Specification Template is provided by the OPC Foundation and can be used to define and
publish OPC UA companion specifications or OPC UA information model specifications developed by joint working
groups or other organizations.
The structure and concepts of this OPC UA information model documentation are mostly derived from this template.

1.2.2 HEIDENHAIN
Note that these documents always apply to a specific software version of the various numeric control models; see
1.3 "Associated HEIDENHAIN CNC Controls" for details.

Brochure: HEIDENHAIN OPC UA NC Server
The brochure provides an overview of the range of functions offered by the HEIDENHAIN OPC UA NC Server.
HEIDENHAIN OPC UA NC Server: The industry standard for machine tools

User’s Manual: Setup, Testing and Running NC Programs, or Setup and Program Run
The User’s Manual contains information relevant to setting up an OPC UA connection to the controller. This includes,
for example, enabling the software option for the OPC UA NC Server, the network and firewall settings, or the
management of digital certificates and the license settings for the application.
In addition to setting up the connection, the User’s Manual describes how to configure the contents of the Machine's
OperatorInfo (of 4.9 "OperatorMachineInfoType") via the machine configuration.
TNCguide

HEIDENHAIN | OPC UA Information Model | 10/2023 13

https://www.heidenhain.com/fileadmin/pdf/en/01_Products/Broschueren/BR_OPC_UA_NC_Server_ID1355797_en.pdf
https://content.heidenhain.de/doku/tnc_guide/html/en/

Introduction | Reference Documents

Technical Manual (for machine manufacturers)
The Technical Manual for machine manufacturers describes how to set the contents of the Machine's
ManufacturerInfo (of 4.10 "ManufacturerInfoType") via the machine configuration.
It also describes how the machine manufacturer can configure the Machine's ManufacturerExtensions (see 10
"Extensions of the Machine Manufacturer") and extend the provided information with his own, for example from his
PLC programm.
Machine manufacturers can find the Technical Manual via their Filebase access.

Klartext Programming
This manual is intended to help you quickly learn to handle the most important procedures on the HEIDENHAIN
control. For an OPC UA Client developer this manual can be helpful in case he uses the HEIDENHAIN programming
station (VirtualBox image) for testing purposes.
TNCguide

Information Model OPC UA NC Server
New versions of this document can be found here:
www.heidenhain.de/opcua-nc-server

HEIDENHAIN | OPC UA Information Model | 10/2023 14

https://content.heidenhain.de/doku/tnc_guide/html/en/
www.heidenhain.de/opcua-nc-server

Introduction | Associated HEIDENHAIN CNC Controls

1.3 Associated HEIDENHAIN CNC Controls
Current Core Information Model Version 1.05
The Core Information Model version 1.05 described within this document is supported by HEIDENHAIN OPC UA NC
Server starting with the following products and versions:

TNC7: NC software 817620-18, 817621-18, 817625-18
TNC7 basic: NC software 817621-18, 817625-18
TNC 640: NC software 340590-18, 340591-18, 340595-18
TNC 620: NC software 817600-18, 817601-18, 817605-18

In general, all products listed here support the newly added elements (see "What's New?", Page 9); only the scope of
application differs depending on the available software options.

Overview of Core Information Model Versions
An overview of the different Core Information Model versions supported by the OPC UA NC Server included within the
specific products and versions is given in Table 2.
For the changes and extensions of the different versions, see "What's New?", Page 9.
Table 2: Supported Core Information Model Versions

Core Information Model Version Product As of NC software version

1.00 TNC 640 34059x-10

TNC 640 34059x-111.01

TNC 620 81760x-08

TNC7 81762x-16

TNC 640 34059x-16

1.02

TNC 620 81760x-16

TNC7 81762x-17

TNC 640 34059x-17

1.03

TNC 620 81760x-17

TNC7 81762x-17 SP01

TNC 640 34059x-17 SP01

1.04

TNC 620 81760x-17 SP01

TNC7 81762x-18

TNC7 basic 81762x-18

TNC 640 34059x-18

1.05

TNC 620 81760x-18

HEIDENHAIN has simplified the version schema, starting with NC software version 16:
The publication period determines the version number.
All control models of a publication period have the same version number.
The version number of the programming stations corresponds to the version number of the NC
software.

HEIDENHAIN | OPC UA Information Model | 10/2023 15

2
Fundamentals

Fundamentals | Introduction to OPC Unified Architecture

2.1 Introduction to OPC Unified Architecture

2.1.1 What is OPC UA?
OPC UA is an open and royalty-free set of standards designed as a universal communication protocol.
While there are numerous communication solutions available, OPC UA has some key advantages:

A state-of-the-art security model (see OPC UA Part 2)
A fault-tolerant communication protocol
An information-modeling framework that allows application developers to represent their data in a way that
makes sense to them

OPC UA has a broad scope which delivers for economies of scale for application developers. This means that a larger
number of high-quality applications at a reasonable cost are available. When combined with semantic models such
as the OPC UA NC Server Core Information Model, OPC UA makes it easier for end users to access data via generic
commercial applications.
The OPC UA model is scalable from small devices to ERP systems. OPC UA Servers process information locally
and then provide that data in a consistent format to any application requesting data – ERP, MES, PMS, Maintenance
Systems, HMI, smartphone, or a standard browser, for example. For a more complete overview, see OPC UA Part 1.

HEIDENHAIN | OPC UA Information Model | 10/2023 18

Fundamentals | Introduction to OPC Unified Architecture

2.1.2 Basics of OPC UA
As an open standard, OPC UA is based on standard internet technologies, like TCP/IP, HTTP and Web Sockets.
As an extensible standard, OPC UA provides a set of Services (see OPC UA Part 4) and a basic information model
framework. This framework provides an easy manner for creating and exposing vendor-defined information in a
standard way. More importantly, all OPC UA Clients are expected to be able to discover and use vendor-defined
information. This means OPC UA users can benefit from the economies of scale that come with generic visualization
and historian applications. This specification is an example of an OPC UA Information Model designed to meet the
needs of developers and users.
OPC UA Clients can be any consumer of data from another device on the network to browser-based thin clients and
ERP systems. The full scope of OPC UA applications is shown in Image 1.

Browser
Thin Client

Visualization
HMI

Firewall

Cloud
Application

SCADA

MES

ERP

Device DeviceDevice

Secure
Communication
Across the
Internet

Fast, Non -
Proprietary
Device to
Device

Control to Device
Network
Integration

Integration
with
ERP and MES

OPC UA
Clients

OPC UA
Servers
&
Clients

Figure 1: The Scope of OPC UA within an Enterprise

OPC UA provides a robust and reliable communication infrastructure having mechanisms for handling lost
messages, failover, heartbeat, etc. With its binary-encoded data, it offers a high-performance data exchange solution.
Security is built into OPC UA as security requirements become increasingly important, especially since production
environments are connected to the office network or the internet and attackers are starting to focus on automation
systems.

HEIDENHAIN | OPC UA Information Model | 10/2023 19

Fundamentals | Information Modeling in OPC UA

2.2 Information Modeling in OPC UA
This chapter provides an overview about the concepts of information modeling in OPC UA, their representation in this
document, and introduces the related terms. These and the conventions as defined in 2.4 "Conventions used in this
document" are used in this document to describe the Core Information Model.
Defined terms of the OPC UA specification, types, and their components in the OPC UA specification and in this
specification are italicized in this document.

Concepts
OPC UA provides a framework that can be used to represent complex information as Objects in an AddressSpace
which can be accessed with standard services. These Objects consist of Nodes connected by References. Different
classes of Nodes convey different semantics. For example, a Variable Node represents a value that can be read
or written. The Variable Node has an associated DataType that can define the actual value, such as a string, float,
structure etc. It can also describe the Variable value as a variant. A Method Node represents a function that can be
called. Every Node has a number of Attributes including a unique identifier called a NodeId and non-localized name
called a BrowseName. An Object representing a ‘Reservation’ is shown in Image 2.

Reservation

Who

When

First Name
“John”

Last Name
“Smith”

Start
“2:00PM”

End
“4:00PM”

Cancel

Object Nodes
convey semantics

 and structure

Method Nodes
define complex

behaviors

Variable Nodes
provide access to data

Figure 2: A Basic Object in an OPC UA Address Space

Object and Variable Nodes represent instances and they always reference a TypeDefinition (ObjectType or
VariableType) Node which describes their semantics and structure. Image 3 illustrates the relationship between an
instance and its TypeDefinition.
The type Nodes are templates that define all of the children that can be present in an instance of the type. In the
example in Image 3, the PersonType ObjectType defines two children: First Name and Last Name. All instances of
PersonType are expected to have the same children with the same BrowseNames. Within a type the BrowseNames
uniquely identify the children. This means Client applications can be designed to search for children based on the
BrowseNames from the type instead of NodeIds. This eliminates the need for manual reconfiguration of systems if a
Client uses types that multiple Servers implement.

HEIDENHAIN | OPC UA Information Model | 10/2023 20

Fundamentals | Information Modeling in OPC UA

BaseObjectType

Who

First Name
“John”

Last Name
“Smith”

First Name
[String]

Last Name
[String]

Middle Name
“Jacob”

Instances can
be extended

Structure and
semantics can
be inherited

from other types

ObjectType Nodes
are templates that

describe the structure
of an instance

Every Instance Node
has a

TypeDefinition Node
which defines its structure

Semantics: An instance of PersonType represents a human
Structure: An instance of PersonType has a First Name and a Last Name

PersonType

Figure 3: The Relationship between Type Definitions and Instances

OPC UA also supports the concept of sub-typing. This allows an information model developer to take an existing
type and extend it. Rules regarding sub-typing are defined in OPC UA Part 3, but in general they allow the extension
of a given type or the restriction of a DataType. For example, the modeler may decide that the existing ObjectType in
some cases needs an additional Variable. The modeler can create a subtype of the ObjectType and add the Variable.
A Client that is expecting the parent type can treat the new type as if it was of the parent type. Regarding DataTypes,
subtypes can only restrict. If a Variable is defined to have a numeric value, a subtype could restrict it to a float.
References allow Nodes to be connected in ways that describe their relationships. All References have a
ReferenceType that specifies the semantics of the relationship. References can be hierarchical or non-hierarchical.
Hierarchical references are used to create the structure of Objects and Variables. Non-hierarchical are used to
create arbitrary associations. Applications can define their own ReferenceType by creating subtypes of an existing
ReferenceType. Subtypes inherit the semantics of the parent but may add additional restrictions. Image 4 depicts
several References, connecting different Objects.

HEIDENHAIN | OPC UA Information Model | 10/2023 21

Fundamentals | Information Modeling in OPC UA

Joe Sam Dogs Cats

Animals

OrganizesOrganizes HasClassification HasClassification

Kennel #2

Owns

PoodleBreeds

HasClassification

Farmers

Siamese

HasClassification

Fido HasBreedLivesIn

Organizes

Owns

Has

Classification

Non-

Hierarchical

Breeds

HasBreed

LivesIn

Reference Types
can be created

 from other reference types

They can be used to
show hierarchies

 or just relationships

Figure 4: Examples of References between Objects

The figures above use a notation that was developed for the OPC UA specification. The notation is summarized in
Image 5. UML representations can also be used; however, the OPC UA notation is less ambiguous because there is a
direct mapping from the elements in the figures to Nodes in the AddressSpace of an OPC UA Server.

Object Variable Method View

<TypeName> <TypeName> <TypeName>

Instances

Types

Standard
References

VariableTypeObjectType DataType ReferenceType

Symmetric
Reference

Asymmetric
Reference

Hierarchical
Reference

HasEventSource
HasComponent

HasProperty

HasTypeDefinition

HasSubtype

Figure 5: The OPC UA Information Model Notation

A complete description of the different types of Nodes and References can be found in OPC UA Part 3 and the base
structure is described in OPC UA Part 5.

HEIDENHAIN | OPC UA Information Model | 10/2023 22

Fundamentals | Information Modeling in OPC UA

The OPC UA specification defines a very wide range of functionality in its basic information model. It is not expected
that all Clients or Servers support all functionality in the OPC UA specifications. OPC UA includes the concept of
Profiles, which segment the functionality into testable certifiable units. This allows the definition of functional subsets
(that are expected to be implemented) within a companion specification. The Profiles do not restrict functionality, but
generate requirements for a minimum set of functionality (see OPC UA Part 7).

Namespaces
OPC UA allows information from many different sources to be combined into a single coherent AddressSpace.
Namespaces are used to make this possible by eliminating naming and ID conflicts between information from
different sources. Namespaces in OPC UA have a globally unique string called a NamespaceUri and a locally unique
integer called a NamespaceIndex. The NamespaceIndex is only unique within the context of a Session between
an OPC UA Client and an OPC UA Server. The Services defined for OPC UA use the NamespaceIndex to specify the
Namespace for qualified values.
There are two types of values in OPC UA that are qualified with Namespaces: NodeIds and QualifiedNames. NodeIds
are globally unique identifiers for Nodes. This means the same Node with the same NodeId can appear in many
Servers. This, in turn, means Clients can have built-in knowledge of some Nodes. OPC UA Information Models
generally define globally unique NodeIds for the TypeDefinitions defined by the Information Model.
QualifiedNames are non-localized names qualified with a Namespace. They are used for the BrowseNames of Nodes
and allow the same names to be used by different information models without conflict. TypeDefinitions are not
allowed to have children with duplicate BrowseNames; however, instances do not have that restriction.

Companion Specifications
An OPC UA companion specification for an industry-specific vertical market describes an Information Model by
defining ObjectTypes, VariableTypes, DataTypes and ReferenceTypes that represent the concepts used in the vertical
market, and potentially also well-defined Objects as entry points into the AddressSpace.

HEIDENHAIN | OPC UA Information Model | 10/2023 23

Fundamentals | Abbreviations and Terms

2.3 Abbreviations and Terms
Abbreviations
DCM Dynamic Collision Monitoring
CC Controller Computer
FS Functional Safety
JSON JavaScript Object Notation
M3D Mesh3D
MC Main Computer
NC Numeric Control
PLC Programmable Logic Control
SPLC Safety Programmable Logic Control
STL Standard Tessellation Language
URI Uniform Resource Identifier
XML Extensible Markup Language

Terms
Tools and tool data at associated HEIDENHAIN CNC controls:
To one tool belongs a set of data to identify the tool and describe the tool's characteristics. Next to information about
the tool life and wear there is also data regarding the production technology and usage of the tool. A HEIDENHAIN
control stores the data of one physical tool in at least one tool record.
A tool record is addressed by a tool number and a tool index. The tool number identifies a tool within the scope of
one machine. If more than one record is needed to describe a tool (e.g., in case of a stepped tool), the additional tool
index refers to the separate records.
If a tool is defined at the control using more than one tool record, it is called indexed tool. HEIDENHAIN recommends
having always a tool record with index 0, the so called main tool. Additional indices take the value range from 1 to 9.
The name of a tool does not uniquely identify a tool in a machine. It is often used to identify tools of the same kind
with the similar (geometrical) characteristics (e.g., "MILL_D6_ROUGH"). Each index of a tool can have a specific
name.
Often a tool management system is used to manage the tools and their data on a shop floor. To identify a tool
within the entire company, they assign a unique identifier to each physical tool. The identifier is often used as a (tool)
database ID to link the physical tool to its data in the central tool data management system.
If a tool is moved from one machine to the other the tool number may change, but its database ID remains the same.

HEIDENHAIN | OPC UA Information Model | 10/2023 24

Fundamentals | Conventions used in this document

2.4 Conventions used in this document
The following sections contain a short overview about how the Core Information Model is described within this
document.
It is assumed that basic concepts of OPC UA information modeling are understood in this specification. This
document will use these concepts to describe the Core Information Model. For the purposes of this document, the
terms and definitions given in OPC UA Part 3, OPC UA Part 4, OPC UA Part 5 and OPC UA Part 8 apply.
As already mentioned, defined terms of the OPC UA specification, types, and their components in the OPC UA
specification and in this specification are italicized in this document.
For readability and less complex descriptions, an instance of a specific type can be denoted similar to the type
without the -Type suffix (e.g., an Event of type ErrorEventType is called ErrorEvent).

2.4.1 Conventions for Node descriptions
Node definitions are specified using tables for Attributes (see 2.4.3 "Common Attributes") and References (see
Table 4).
Attributes are defined by providing the Attribute name and a value, or a description of the value.
References are defined by providing the ReferenceType name, the BrowseName of the target Node, and its NodeClass.

If the target Node is a component of the Node being defined in the table, the Attributes of the composed Node are
defined in the same row of the table.
The DataType is only specified for Variables; “[<number>]” indicates a single-dimensional array, for multi-
dimensional arrays the expression is repeated for each dimension (e.g. [2][3] for a two-dimensional array). For
all arrays, ArrayDimensions is set as identified by <number> values. If no <number> is set, the corresponding
dimension is set to 0, indicating an unknown size. If no number is provided at all, ArrayDimensions can be
omitted. If no brackets are provided, it identifies a scalar DataType and the ValueRank is set to the corresponding
value (see OPC UA Part 3). In addition, ArrayDimensions is set to null or is omitted. If it can be Any or
ScalarOrOneDimension, the value is put into “{<value>}”, so either “{Any}” or “{ScalarOrOneDimension}” and the
ValueRank is set to the corresponding value (see OPC UA Part 3) and ArrayDimensions is set to null or is omitted.
Examples are given in Table 3.
Table 3: Examples of DataTypes

Notation Data-
Type

Value-
Rank

Array-
Dimensions

Description

Int32 Int32 -1 omitted or
null

A scalar Int32.

Int32[] Int32 1 omitted or
{0}

Single-dimensional array of Int32 with an
unknown size.

Int32[][] Int32 2 omitted or
{0,0}

Two-dimensional array of Int32 with unknown
sizes for both dimensions.

Int32[3][] Int32 2 {3,0} Two-dimensional array of Int32 with a size of
3 for the first dimension and an unknown size
for the second dimension.

Int32[5][3] Int32 2 {5,3} Two-dimensional array of Int32 with a size of
5 for the first dimension and a size of 3 for the
second dimension.

Int32{Any} Int32 -2 omitted or
null

An Int32 where it is unknown if it is scalar or
array with any number of dimensions.

Int32{ScalarOrOneDimension} Int32 -3 omitted or
null

An Int32 where it is either a single-dimension-
al array or a scalar.

The TypeDefinition is specified for Objects and Variables.

HEIDENHAIN | OPC UA Information Model | 10/2023 25

Fundamentals | Conventions used in this document

The TypeDefinition column specifies a symbolic name for a NodeId, i.e. the specified Node points with a
HasTypeDefinition Reference to the corresponding Node.
The ModellingRule of the referenced component is provided by specifying the symbolic name of the rule in the
ModellingRule column. In the AddressSpace, the Node shall use a HasModellingRule Reference to point to the
corresponding ModellingRule Object.

If the NodeId of a DataType is provided, the symbolic name of the Node representing the DataType is used.
Nodes of all other NodeClasses cannot be defined in the same table; therefore only the used ReferenceType, their
NodeClass, and their BrowseName are specified. A reference to another part of this document points to their
definition.
Table 4 illustrates the table for References. If no components are provided, the DataType, TypeDefinition and
ModellingRule columns may be omitted and only a Comment column is introduced to point to the Node definition.
Table 4: Type Definition Table

References NodeClass BrowseName DataType TypeDefinition ModellingRule

ReferenceType
name

NodeClass
of the
target
Node

BrowseName of
the target Node. If
the Reference is to
be instantiated by
the server, then the
value of the target
Node’s BrowseName
is “--“.

DataType of
the referenced
Node, only
applicable for
Variables.

TypeDefinition of the
referenced Node,
only applicable
for Variables and
Objects.

Referenced
ModellingRule of
the referenced
Object.

NOTE Notes referencing footnotes of the table content.

Components of Nodes can be complex, that is they themself contain components. The TypeDefinition, NodeClass,
DataType and ModellingRule can be derived from the type definitions, and the symbolic name can be created as
defined in 2.4.3 "Common Attributes". Therefore, the contained components are not explicitly specified; they are
implicitly specified by the type definitions.

2.4.2 NodeIds and BrowseNames

NodeIds
The NodeIds of all Nodes described in this standard are only symbolic names.
The symbolic name of each Node defined in this specification is its BrowseName, or, when it is part of another Node,
the symbolic name is the BrowseName of the other Node, a period (.), and the BrowseName of itself. In this case “part
of” means that the whole has a HasProperty or HasComponent Reference to its part. Since all Nodes that are not part
of another Node have a unique name in this specification, the symbolic name is unique.
The NamespaceUri for all NodeIds defined in this specification is defined in 8.1 "Namespace Metadata". The
NamespaceIndex for this NamespaceUri is vendor-specific and depends on the position of the NamespaceUri in the
server namespace table.
Note that this specification not only defines concrete Nodes, but also requires that some Nodes shall be generated,
for example one for each Session running on the Server. The NodeIds of those Nodes are Server-specific, including
the namespace. But the NamespaceIndex of those Nodes cannot be the NamespaceIndex used for the Nodes
defined in this specification, because they are not defined by this specification but generated by the Server.

BrowseNames
The text part of the BrowseNames for all Nodes defined in this specification is specified in the tables defining the
Nodes. The NamespaceUri for all BrowseNames defined in this specification is defined in 8.1 "Namespace Metadata".
If the BrowseName is not defined by this specification, a namespace index prefix like ‘0:EngineeringUnits’ or
‘2:DeviceRevision’ is added to the BrowseName. This is typically necessary if a Property of another specification is
overwritten or used in the OPC UA types defined in this specification. Table 202 provides a list of namespaces and
their indexes as used in this specification.

HEIDENHAIN | OPC UA Information Model | 10/2023 26

Fundamentals | Conventions used in this document

2.4.3 Common Attributes

General
The Attributes of Nodes, their DataTypes and descriptions are defined in OPC UA Part 3. Attributes not marked as
optional are mandatory and shall be provided by a Server. The following tables define if the Attribute value is defined
by this specification or if it is server-specific.
For all Nodes specified in this specification, the Attributes named in Table 5 shall be set as specified in the table.
Table 5: Common Node Attributes

Attribute Value

DisplayName The DisplayName is a LocalizedText. Each server shall provide the DisplayName identical to
the BrowseName of the Node for the LocaleId “en”. Whether the server provides translated
names for other LocaleIds is server-specific.

Description Optionally a server-specific description is provided.

NodeClass Shall reflect the NodeClass of the Node.

NodeId The NodeId is described by BrowseNames as defined in "BrowseNames" .

WriteMask Optionally the WriteMask Attribute can be provided. If the WriteMask Attribute is provided,
it shall set all non-server-specific Attributes to "not writable". For example, the Description
Attribute may be set to "writable" since a Server may provide a server-specific description
for the Node. The NodeId shall not be writable, because it is defined for each Node in this
specification.

UserWriteMask Optionally the UserWriteMask Attribute can be provided. The same rules as for the
WriteMask Attribute apply.

RolePermissions Optionally server-specific role permissions can be provided.

UserRolePermissions Optionally the role permissions of the current Session can be provided. The value is
server-specific and depends on the RolePermissions Attribute (if provided) and the current
Session.

AccessRestrictions Optionally server-specific access restrictions can be provided.

Objects
For all Objects specified in this specification, the Attributes named in Table 6 shall be set as specified in the table. The
definitions for the Attributes can be found in OPC UA Part 3.
Table 6: Common Object Attributes

Attribute Value

EventNotifier Whether the Node can be used to subscribe to Events or not is server-specific.

HEIDENHAIN | OPC UA Information Model | 10/2023 27

Fundamentals | Conventions used in this document

Variables
For all Variables specified in this specification, the Attributes named in Table 7 shall be set as specified in the table.
The definitions for the Attributes can be found in OPC UA Part 3.
Table 7: Common Variable Attributes

Attribute Value

MinimumSamplingIn-
terval

Optionally, a server-specific minimum sampling interval is provided.

AccessLevel The access level for Variables used for type definitions is server-specific; for all other
Variables defined in this specification, the access level shall allow reading; other settings
are server-specific.

UserAccessLevel The value for the UserAccessLevel Attribute is server-specific. It is assumed that all
Variables can be accessed by at least one user.

Value For Variables used as InstanceDeclarations, the value is server-specific; otherwise it shall
represent the value described in the text.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behavior is server-
specific.
If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the Variable.

Historizing The value for the Historizing Attribute is server-specific.

AccessLevelEx If the AccessLevelEx Attribute is provided, it shall have the bits 8, 9, and 10 set to 0,
meaning that read and write operations on an individual Variable are atomic, and arrays
can be partly written.

VariableTypes
For all VariableTypes specified in this specification, the Attributes named in Table 8 shall be set as specified in the
table. The definitions for the Attributes can be found in OPC UA Part 3.
Table 8: Common VariableType Attributes

Attribute Value

Value Optionally a server-specific default value can be provided.

ArrayDimensions If the ValueRank does not identify an array of a specific dimension (i.e. ValueRank <= 0) the
ArrayDimensions can either be set to null or the Attribute is missing. This behavior is server-
specific.
If the ValueRank specifies an array of a specific dimension (i.e. ValueRank > 0) then the
ArrayDimensions Attribute shall be specified in the table defining the VariableType.

Methods
For all Methods specified in this specification, the Attributes named in Table 9 shall be set as specified in the table.
The definitions for the Attributes can be found in OPC UA Part 3.
Table 9: Common Method Attributes

Attribute Value

Executable All Methods defined in this specification shall be executable (Executable Attribute set to
“True”), unless it is defined differently in the Method definition.

UserExecutable The value of the UserExecutable Attribute is server-specific. It is assumed that all Methods
can be executed by at least one user.

HEIDENHAIN | OPC UA Information Model | 10/2023 28

3
Core Information
Model Overview

Core Information Model Overview | Core Types Overview

3.1 Core Types Overview
Model Overview
In this overview the modeling concepts of the OPC UA NC Server Core Information Model are explained and several
examples are presented. The aim of this outline is to give an overview of the different components and concepts of
the model, so that the detailed descriptions of the types in the following chapters are easier to understand.
The object- and event-type hierarchy of the OPC UA Information Model is displayed in Image 6.

Base OPC UA
Information Model

Core Information Model

MachineType

SoftwareVersionList
Type

NCStateMachineType

BaseObjectType

FiniteStateMachine
Type

OperatingTimesType

ManufacturerInfoType

OperatorMachine
InfoType

ErrorEntryType

InterfaceType

ChannelListType

ControlInfoType

ChannelType ProgramType

ErrorEntryListType

ErrorInterfaceType

NCProgram
StateMachineType

ErrorEventType

ErrorOccurredEvent
Type

ErrorClearedEvent
Type

BaseEventType

StateMachineType

TransitionEventType

NCTransitionEvent
Type

ToolChangedEvent
Type

ExecutionMessage
EventType

BaseToolEventType

ToolLockedEventType

ToolDataSet
ModificationEventType

ToolData
ManagementType

ToolDataCategoryType

ToolDataItemType

ToolData
RepresentationType

ToolTypeDescription
Type

ToolTypeCategoryType

LocalToolDataSetType

ServiceFileInterface
Type

Figure 6: Types of the Core Information Model

Each manufacturing system with its control is represented by an instance of the MachineType. The object instance
Machine is located in a HEIDENHAIN NC folder inside the OPC UA Server's AddressSpace Objects folder.

HEIDENHAIN | OPC UA Information Model | 10/2023 30

Core Information Model Overview | Machine Instance

3.2 Machine Instance
Each machine tool is represented by a Machine object of type MachineType as shown in Image 7.
The Machine object has several components that contain all information and functions:

The Machine has one or more machining Channels (NC channels) (see 3.5 "Machining Channel")
The State of the NC can be retrieved and monitored via the Machine's State object (see 3.4 "NC State Machine")
Error information can be retrieved and monitored via the Machine's Errors object (see 3.7 "Errors, Warnings and
Notifications")
The Machine's OperatingTimes contains several operating times, such as the machine's up-time (see 3.8
"Operating Times of the Machine")
ControlInfo, ManufacturerInfo and OperatorInfo contain all kinds of additional information related to the machine,
like the model number, software versions, etc., with an overview described in 3.3 "General Information about the
Machine" and details in 4.10 "ManufacturerInfoType" and 4.9 "OperatorMachineInfoType".
FileSystem provides access to the TNC and PLC partitions of the machine's file system (see 3.9 "File System
Access" and 9 "Machine File System Access").
ManufacturerExtensions provides access to machine-specific information and is configured by the machine
manufacturer (see 10 "Extensions of the Machine Manufacturer"). Objects and variables referenced by
ManufacturerExtensions are not specified by the Core Information Model and can differ on various machines.
ToolDataManagement provides access to the tool data of the Machine (see 3.10 "Tool Data Management" and
4.16 "ToolDataManagementType").
Diagnostics provides information and functions for machine diagnostics like creation of service files (see 4.23
"ServiceFileInterfaceType").

Example: Machine Instance
(note that some nodes are

 omitted for reasons of clarity)

MachineType:
Machine

NCStateMachineType:
State

ChannelListType:
Channels

ErrorInterfaceType:
Errors

ControlInfoType:
ControlInfo

ManufacturerInfoType:
ManufacturerInfo

OperatorMachineInfoType:
OperatorInfo

OperatingTimesType:
OperatingTimes

HostComputerMode

ChannelType:
0

0:FileDirectoryType:
FileSystem

Organizes 0:FileDirectoryType:
TNC

Organizes
0:FileDirectoryType:

PLC

0:BaseObjectType:
ManufacturerExtensions

ToolDataManagementType:
ToolDataManagement

0:BaseObjectType:
Diagnostics

ServiceFileInterfaceType:
ServiceFiles

Figure 7: Example Machine instance of MachineType

HEIDENHAIN | OPC UA Information Model | 10/2023 31

Core Information Model Overview | General Information about the Machine

3.3 General Information about the Machine
Aside from information directly related to manufacturing and functions to control the operation of the machine,
several info objects of Machine provide additional information. This additional information identifies the machine
and its software components or can provide information like the location of the machine or the manufacturer service
contact.
This additional machine information is grouped into three categories:

ControlInfo is the category where HEIDENHAIN provides information like the control model and software version
(see 4.8 "ControlInfoType").
ManufacturerInfo is the category where the machine manufacturer can provide information like product type,
serial number, a (local) service contact, etc. (see 4.10 "ManufacturerInfoType").
OperatorInfo is the category where the owner of the machine can provide information like the location of the
machine or an inventory number (see 4.9 "OperatorMachineInfoType").

(For the complete list of all components of the three machine information object types, refer to the chapters
describing the individual types.)
The values for the components of ManufacturerInfo and OperatorInfo at the Machine object can be set in the
machine's configuration. The configuration parameters are described in the technical documentation of the specific
control type or their user manuals.

HEIDENHAIN | OPC UA Information Model | 10/2023 32

Core Information Model Overview | NC State Machine

3.4 NC State Machine
OPC UA Server and the Control
The Server on a machine is able to run independently from the control software. If, for example, only the control
software is restarted and the operating system remains active, the Server is also not restarted. But during this time
the Server cannot provide all information about the control.
Whether the Server has a connection to the control and in which state the control is at the moment is represented by
the State component of a Machine.

Control State Machine
The Machine's State object is of NCStateMachineType, which is a subtype of OPC UA FiniteStateMachineType, as
shown in Image 8. For more information on OPC UA StateMachines, refer to OPC UA Part 16.

Core Type Definition

Example: State component of a Machine

State

NCStateMachine
Type

GeneratesEvent NCTransitionEvent
Type

CurrentState

LastTransition

Figure 8: Example StateMachine instance State of type NCStateMachineType

With its states and transitions as displayed in Image 9 the NCStateMachineType covers the connection status of the
Server to the control and different states of the control during startup and initialization.

HEIDENHAIN | OPC UA Information Model | 10/2023 33

Core Information Model Overview | NC State Machine

NCIsNotConnected

NCIsConnected

NCIsBooted

NCIsInitializing

NCIsAvailable

NCIsShuttingDown

NCConnectionEstablished

NCBooted

NCStartInitialization

NCInitializationReady

NCShutdown

NCShutdown

NCNotAvailable

Figure 9: State machine diagram of NCStateMachineType

When the state of an NCStateMachine changes, events of type NCTransitionEventType are emitted. In addition to the
TransitionEventType components, the NCTransitionEventType has a TransitionReason.

HEIDENHAIN | OPC UA Information Model | 10/2023 34

Core Information Model Overview | Machining Channel

3.5 Machining Channel
Channels of a Machine
Machine axes can be grouped into several machining channels. Each machining channel executes its program as a
separate control. A multi-channel capable control can execute several programs simultaneously and, for example,
machine the front side in one channel, then transfer the workpiece to the second channel and machine the rear side
there while the first channel machines the front side of the next workpiece.
As shown in Image 7, a Machine has a Channels list containing one ChannelType instance for every machining
channel. The BrowseName and DisplayName of a Channel object are derived from the Id of the machining channel.
The different components of a Channel, illustrated in Image 10, provide, for example, the possibility to monitor and
control the program execution (see also 3.6 "NC Program Execution Monitoring and Control" and further methods
and information described within the following sections).

Example: Channels list with one Channel

Channels

Core Type Definition

ChannelListType ChannelType

0

ChannelActiveErrors

CutterLocation

FeedOverride

RapidOverride

SpeedOverride

Id

OperatingMode

Program

ImportToolUsageCSV

ErrorEntryListTypeProgramType

ErrorEventType

ErrorOccurredEvent
Type

ErrorClearedEvent
Type

GeneratesEvent

ImportToolUsageCSVByNodeId

CurrentTool

Identifier

Name

DatabaseId

RapidTraverseActive

Figure 10: Example Channels list with one Channel 0

A Channel has a list of active errors and warnings related to this machining channel and also emits the corresponding
ErrorEvents. For the concept of errors and warnings including their representation in the address space, see 3.7
"Errors, Warnings and Notifications".

HEIDENHAIN | OPC UA Information Model | 10/2023 35

Core Information Model Overview | Machining Channel

Operating Mode
The OperatingMode variable displays the machine's active mode of operation at the moment and also provides the
possibility of changing the operating mode of the machine. Its DataType is NCOperatingMode, an enumeration with
values like Automatic or SingleStep for NC program execution.

Overrides
The override values for Speed, Rapid and Feed are provided as variables of AnalogItemType. Their EngineeringUnits
and EURanges are given as properties.
For example the FeedOverride variable value is given in percent as described by the EngineeringUnits and normally
ranges between 0% and 150% as given by the Low and High value of the EURange property. Note that an EURange
always is only informative — it describes the range the value is normally in. Other values outside of the given range
are also possible.
Additionally, the RapidTraverseActive variable indicates whether rapid traverse for this channel is active, i.e. which
override is active.
Changing the feed, speed or rapid override percentage by writing a new value to these variables can only be done by
client users with NC.RemoteProgram rights. If a client user has insufficient rights on the control the request is denied
with BadUserAccessDenied.

Current Cutter Location
CutterLocation describes the current cutter location using the Input Coordinate System (I-CS).
CutterLocation is a CutterLocationArrayType variable. Reading the value of CutterLocation will return an array of
CutterLocationDataType structures with each element of the array representing one coordinate of the current cutter
location in I-CS. A coordinate structure contains a CoordinateName, Position and PositionEngineeringUnits.

Current Tool
The CurrentTool object has three component variables providing identification information of the tool used in the
channel.
The tool record identifier, consisting of ToolNumber and ToolIndex, is provided by the Identifier variable. Additionally
the Name and DatabaseId of the current tool are given. (For a description of the terms including the difference
between a tool's number and database ID, see "Terms", Page 24.)
With the tool record identifier the data of the tool can be accessed using the methods provided by the
ToolDataManagement component of a Machine (see 3.10 "Tool Data Management").

HEIDENHAIN | OPC UA Information Model | 10/2023 36

Core Information Model Overview | NC Program Execution Monitoring and Control

3.6 NC Program Execution Monitoring and Control
ProgramType Overview
The Program object groups together functionality and information related to executing NC programs on an NC
Channel. The following sections describe the components shown in Image 11.

Core Type Definition

Example: Program of a Machine Channel

ExecutionState

NCProgram
StateMachineType

GeneratesEvent NCTransitionEvent
Type

CurrentState

LastTransition

Program

ProgramType

CurrentCall

ExecutionStack

Name

GeneratesEvent ExecutionMessage
EventType

Figure 11: Example Program instance of type ProgramType

HEIDENHAIN | OPC UA Information Model | 10/2023 37

Core Information Model Overview | NC Program Execution Monitoring and Control

Name and Execution Call Stack of the Running Program
The Program object provides information about the running program with different granularity. The loaded main
program is denoted as Name variable of Program. The CurrentCall variable contains the subprogram executed at
the moment, if one is called. Next to that also the full program execution stack together with the block numbers and
block content can be read from the ExecutionStack variable.
ExecutionStack is a ProgramPositionArrayType variable. Reading the value of ExecutionStack will return an array of
ProgramPositionDataType structures with each element of the array representing one program position beginning
with the main program and containing all called subprograms down to the currently active subprogram of the NC
program. A program position structure contains a ProgramName, BlockNumber, BlockContent and CallStackLevel.

HEIDENHAIN | OPC UA Information Model | 10/2023 38

Core Information Model Overview | NC Program Execution Monitoring and Control

Program Execution State Machine
The execution of a program can be monitored and controlled through the ExecutionState component of Program.
The ExecutionState is an NCProgramStateMachine with the states and transitions as shown in Image 12. The
NCProgramStateMachineType is a subtype of FiniteStateMachineType.

NotSelected

Idle

Selection Deselection

Running Stopped

Interrupted

Error

Finished

Execution
Interruption

Stopped
Execution

Started
Execution

Error
Occurrence

Error
Occurrence

Error
Deletion

Completed
Execution

Canceled
Execution

Finished
Execution

Selection,
Deselection
o r
Canceled
Execution

Started
Execution

Started
Execution

Error
Occurrence

Error
Occurrence

Selection

Figure 12: States and Transitions of an NCProgramStateMachine

As defined in OPC UA Part 16, the CurrentState and LastTransition variables provide information about the current
state of the state machine regarding the program execution (e.g., Running) and the transition that is completed to
get to this state (e.g., IdleToRunning). The Id properties of the CurrentState and LastTransition variables contain the
NodeId of the corresponding State and Transition in the NCProgramStateMachineType.
For a detailed description of all states, transitions and events see 4.15 "NCProgramStateMachineType".
When a transition from one state to another occurs, an event of type NCTransitionEventType is reported by the
ExecutionState object. So state changes of the program execution can be monitored using subscriptions to
NCTransitionEvents on the ExecutionState object or data change subscriptions to the CurrentState variable value.
The ExecutionState state machine provides with its Methods like SelectProgram, Start, Stop and Cancel the
functionality to control the program execution. For a more detailed description of these Methods, their signature, and
possible result codes, see 4.15 "NCProgramStateMachineType".

HEIDENHAIN | OPC UA Information Model | 10/2023 39

Core Information Model Overview | NC Program Execution Monitoring and Control

Program Execution and File System
If the OPC UA NC Server also provides access to the machine's file system (see 3.9 "File System Access"), the NC
program can also be selected using the SelectProgramByNodeId method. Next to that, the Name variable is extended
with a property FileNodeId containing the NodeId of the File node corresponding to the selected NC program file
within the machine's file system (if it is exposed in the address space).
For more information about file system access and file transfer to and from the machine, see 3.9 "File System
Access" and 9 "Machine File System Access".

Emitted Events
The NCTransitionEvents of the ExecutionState state machine are propagated to the Program node. Along with that
the Program node emits events of type ExecutionMessageEventType. These events are reported whenever a specific
NC program command (FN 38: SEND) is executed. The Message property of the event contains the string defined
in this command. It can be used for communication between an NC program and other remote applications, for
example.

HEIDENHAIN | OPC UA Information Model | 10/2023 40

Core Information Model Overview | Errors, Warnings and Notifications

3.7 Errors, Warnings and Notifications
Errors, Warnings and Notifications of an NC
The control displays errors in the header of the screen, until it is cleared or replaced by a higher-priority error (higher
error class). The complete information on all pending error messages is given in the error window.
Information about active errors and warnings (including notifications) are part of the Core Information Model. Service
files can be created to analyze possible issues of the machine in detail or to request assistance from customer
service. See Diagnostics at 4.1 "MachineType" and 4.23 "ServiceFileInterfaceType".
In this specification the term error is used as generic term for errors, warnings, and notifications. All are represented
as instances of ErrorEntryType and ErrorEventType. The Class property describes the classification, for example, of an
ErrorEntry as warning.

HEIDENHAIN | OPC UA Information Model | 10/2023 41

Core Information Model Overview | Errors, Warnings and Notifications

ErrorInterfaceType, ErrorLists and ErrorEvents
The Errors component of the Machine is an instance of ErrorInterfaceType and provides the information
and functionality for error handling. Image 13 contains an overview of the related types and an example
ErrorInterfaceType instance.
The AllActiveErrors component is of type ErrorEntryListType and contains one object of type ErrorEntryType for every
error present at the machine. The list is populated at the latest when the control is fully initialized, so the Machine's
State state machine reaches the state NCIsAvailable, and is kept up to date as long as there is a connection between
the Server and the control.

Core Type Definition

Example: Error interface of a Machine with error objects

Errors

InterfaceType ErrorEventType

ErrorOccurredEvent
Type

ErrorClearedEvent
TypeErrorInterfaceType

AllActiveErrors

ClearAllErrors

ErrorEntryType

ErrorEntry1

ErrorEntry2

ErrorEntryListType

GeneratesEvent

Figure 13: Error-related types and example instance

After the initialization, events of type ErrorOccurredEventType and ErrorClearedEventType are reported at the list
object when a new error occurs or is cleared at the machine. The events are propagated upwards via the Error and
Machine node to the Server node.
An error is represented as ErrorEntry object (instance of ErrorEntryType) and has several properties with information
and details about the error. The corresponding event contains the same information and a property referring to the
error object in the address space.
Some errors are related to a specific machining channel. The Channel property of an error contains the ID of this
channel. Additionally each Channel has a ChannelActiveError component of ErrorEntryListType that provides a list of
errors related to only this channel, using Organizes references to ErrorEntry nodes in the AllActiveErrors list.
ErrorEvents of channel-related errors are reported at the ChannelActiveError node of the channel and forwarded to the
AllActiveErrors node and the channel node by HasNotifier references. So channel-related errors are also emitted at the
channel node and the Channels list of a Machine.

HEIDENHAIN | OPC UA Information Model | 10/2023 42

Core Information Model Overview | Errors, Warnings and Notifications

Clearing an Error
Each error object has a Clear method which can be used to clear the error at the machine if this is possible.
But it is not possible to clear an error in every situation. If it is, for example, an emergency stop and the reason is still
valid, the error cannot be cleared. When a Clear method is called, the Server sends a clear command to the NC. When
this method call returns a Good result code, this indicates that the clear command was sent successfully, but does
not necessarily mean the error has been cleared.
When an error is cleared an ErrorClearedEvent is reported for the corresponding ErrorEntry object. Immediately
afterwards the ErrorEntry node is removed from the list.
The ClearAllErrors method of the Error interface has the same behavior. All errors which can be cleared at the
moment are cleared, but errors for which a reason is still present remain active.

Severity Levels of ErrorEvents
The severity of an ErrorOccuredEvent and the related ErrorClearedEvent depends on the Class of an error. The
following Table 10 lists the possible severity values of ErrorEvents.
Table 10: ErrorEventSeverityLevels

Severity Description Error Class

900 Errors with highest impact, the control is reset Reset

800 Errors resulting in the machine switching to emergency stop mode EmergencyStop

700 Program execution is aborted because of this error ProgramAbort

600 Program execution is stopped because of this error ProgramHold

500 Axis movements are stopped because of this error FeedHold

400 Errors without impact on the machine's execution Error

300 Warnings without impact on the machine's execution Warning

200 Informational events without impact on the machine's execution Info

100 Notifications for information, not shown in the event viewer/error list at the
machine's GUI

Note

1 Not an error, lowest severity None

HEIDENHAIN | OPC UA Information Model | 10/2023 43

Core Information Model Overview | Operating Times of the Machine

3.8 Operating Times of the Machine
Several operating times, like the machine and control's up-time or the summarized program execution time, are
provided in the OperatingTimes object of Machine, see 4.7 "OperatingTimesType". The operating times can be used to
monitor the overall usage of the machine.
The operating time variable's data type is Duration and the values are updated once every minute and have a
resolution of 1ms.

HEIDENHAIN | OPC UA Information Model | 10/2023 44

Core Information Model Overview | File System Access

3.9 File System Access
Introduction
OPC UA NC Servers supporting the Core Information Model from Version 1.01 onwards can expose parts of the
machine's file system in their AddressSpace as component of the MachineType instance Machine. Depending on the
access rights, an OPC UA client user can access the different exposed file system partitions (TNC and PLC partition)
of the machine.
Following the definition of "File Transfer" in OPC UA Part 20, the entry point to the file system representation is a
FileDirectoryType instance node with the BrowseName FileSystem. Below the FileSystem node, nodes of the OPC UA
standard types FileDirectoryType and FileType provide access to the exposed parts of the file system (e.g., to browse
existing files and transfer files to or from the machine). Image 14 shows an example of what this can look like.
Access to the machine's file system can, for example, be used to transfer NC programs to or from the machine or to
download service files. (Service files can be used to analyze issues at the control and are generated by the control
in case of a crash or a manual request. The Core Information Model Version 1.05 adds the possibilty of creating a
service file using the ServiceFiles component at Machine Diagnostics, see 4.23 "ServiceFileInterfaceType".)

HEIDENHAIN | OPC UA Information Model | 10/2023 45

Core Information Model Overview | File System Access

Base OPC UA
Information ModelBaseObjectType

FileDirectoryType

FileTypeFolderType

Example: Machine Instance
(Note: Due to clarity, several components are
omitted, e.g., other components of Machine

or FileSystem)
MachineType:

Machine

FileSystem

Organizes

TNC

PLC

nc_prog

Organizes

ExampleProgram.h

Organizes

SizeCreateDirectory

CreateFile

Delete

MoveOrCopy

OpenCount

Writable

UserWritable

Open

GetPosition

SetPosition

Read

Write

Close

Figure 14: Shortened example of a Machine instance with FileSystem

HEIDENHAIN | OPC UA Information Model | 10/2023 46

Core Information Model Overview | File System Access

References within this Document
9 "Machine File System Access" gives in 9.2 "FileDirectoryType" and 9.3 "FileType" an overview about how the
machine's file system is exposed using the OPC UA standard types and which functionality is provided. Since not
every item can be supported by the OPC UA NC Server, some restrictions and server-specific adaptations are also
described.
Additional details about access to the machine's file system, like handling of the access rights, are given in chapter 9
"Machine File System Access". It also summarizes how the file system related functionality connects the other parts
of the Core Information Model.
Important warnings are listed and several useful hints for OPC UA client application developers are provided in 9.4
"Warnings and Important Hints".
To simplify the descriptions within this documentation, the term File System is used here to describe all the nodes in
the hierarchy below the Machines FileSystem component. As already known, the terms File or FileDirectory describe a
node instance of type FileType or FileDirectoryType .

HEIDENHAIN | OPC UA Information Model | 10/2023 47

Core Information Model Overview | Tool Data Management

3.10 Tool Data Management
ToolDataManagementType Overview
The Machine component of type 4.16 "ToolDataManagementType" provides access to the machine's tool data with
the following components.

The ToolDataRepresentation of type 4.17 "ToolDataRepresentationType" describes all data items of the machine
and groups them into categories. It lists the available tool types and links them with the data items that belong to
the tool type.
The methods provided by the ToolDataAccess component can be used to access the data of tools (e.g., to create
new tool records, read the data of a tool and update it). Detailed information about each method is given at 4.16
"ToolDataManagementType".
Tool data events like the 5.9 "ToolLockedEventType" are emitted at the Notifications node.
The LocalDataSet component of type 4.22 "LocalToolDataSetType" provides the functionality to create a local
copy of the machine's tool data at the OPC UA client side and keep it synchronized.
The Validation component provides the possibility of checking 3D model files for use at the control (e.g., the
quality of the model). See 3D Model Files for Tools

An example instance of 4.16 "ToolDataManagementType" is given in Image 15.

The tool data management is designed in a use case-oriented manner. Are you missing any functionalities
for your use cases? Let us know:
OPCUA-NC-docu@heidenhain.de

HEIDENHAIN | OPC UA Information Model | 10/2023 48

Core Information Model Overview | Tool Data Management

Example:
ToolDataManagementToolDataManagement

Core Type Definition

ToolDataManagementType

Notifications

ToolDataAccess

LocalDataSet

GetAllToolNumbers

LocalToolDataSetType

BaseToolEventType

ToolLockedEventType

GeneratesEvent

GetToolData

ToolDataRepresentation

ToolDataRepresentationType

UpdateToolDataItems

GetToolDataByCategory

GetToolType

ToolDataCategories

ToolDataItems

ToolTypeCategories

ToolTypes

ToolDataSetModificationEventType

GeneratesEvent

CreateToolDataFile

SynchronizationStatus

ToolDataSchema

CreateNewToolDataRecordWithId GetToolDataItems

GetToolNumber

DeleteToolRecord

FindToolRecordIdentifiersByName

GetAllToolNumbersAssignedToPockets

CreateNewToolDataRecord

GetToolIndices

GetAssignedPocketNumbers

Validation

3DModels

(components omitted,
see 3DModels example)

Figure 15: Example ToolDataManagementType instance

HEIDENHAIN | OPC UA Information Model | 10/2023 49

Core Information Model Overview | Tool Data Management

Description of the Machine's Tool Data
The ToolDataRepresentation component of type 4.17 "ToolDataRepresentationType" describes the tool data and tool
types of the machine. Image 16 illustrates the concept with an example.
ToolDataRepresentationType components:

ToolDataItems lists all tool data items of the machine. Each instance of 4.19 "ToolDataItemType" provides
information about the data item, for example, the data type, default value, description, and more metadata like the
value range or engineering units.
Examples are the Name with String data type and a 0:MaxStringLength or the Length using a 0:BaseAnalogType
ValueDescription variable. It provides, next to the Double data type and default value, the 0:EngineeringUnits
millimeter and values at 0:InstrumentRange and 0:ValuePrecision.
If a ToolDataItem denotes files at a predefined location, the FileLocation refers to the directory in the FileSystem.
Examples are the 3D model files for tools, see also 3D Model Files for Tools.
ToolDataCategories lists groups of data items using the 4.18 "ToolDataCategoryType" (e.g., the Identification or
Geometry data category).
ToolTypes lists all available tool types as instances of type 4.21 "ToolTypeDescriptionType" (e.g., MILL_TORUS (the
toroid cutter), or TURN_RECESS (the recessing tool)).
ToolTypeCategories lists technology-based groups of tool types using 4.20 "ToolTypeCategoryType" (e.g.,
MillingTools).
Every tool type is connected with its relevant data items with an 0:AssociatedWith reference.

See Annex A: Tool Data Reference for an overview of the possible tool data items and tool types.
Depending on the control model and NC software version, different tool types and data items are available. It is also
possible that new AssociatedWith references are added (e.g., due to a new NC software version that adds support
of a process technology for more tool types). So new AssociatedWith references are added to link the relevant data
items to the types. The ToolDataRepresentation component of the Machine always lists the available data items and
tool types with their relations.
Machine manufacturers can extend the list of data items with their own additional tool data. These data items are
referenced by a ManufacturerExtension data category.
The list of tool data items, including their properties, and the tool types are created based on the current
configuration of the machine. They are instantiated when the Machine reaches the State NCIsAvailable the first time.
Changes to the definition of the tool data are not applied after the creation of the nodes during runtime of the server.
Normally the definition of the tool data does not change. Machine manufacturers usually extend and adapt the tool
data definition while commissioning the machine or when integrating software updates. The server must be restarted
to apply the changes.

HEIDENHAIN | OPC UA Information Model | 10/2023 50

Core Information Model Overview | Tool Data Management

0:BaseDataVariableType:

0:BaseObjectType: 0:BaseObjectType: 0:BaseObjectType: 0:BaseObjectType:

(Note: For reasons of clarity, several
components are omitted. The colors have
no special meaning; they serve to highlight
the relation of data items and tool types.)

Figure 16: ObjectTypes used for the representation of the machine's tool data including an instance example

HEIDENHAIN | OPC UA Information Model | 10/2023 51

Core Information Model Overview | Tool Data Management

Synchronizing a Local Tool Data Set with the Machine
Methods and events for the most common use cases are provided by ToolDataAccess and Notifications. More
specific use cases can be realized on a local mirror of the machine's tool data directly at the OPC UA client
application. These use cases are addressed by the LocalDataSet component shown in Image 15.
The LocalDataSet component of type 4.22 "LocalToolDataSetType" provides the functionality to create a local copy
of the machine's tool data and keep it up to date using update events. This also makes it possible to synchronize the
tool data base of a central tool management system with the machine.
The method CreateToolDataFile triggers the creation of a JSON file. The file contains the current tool data of the
machine. It can be downloaded using the FileSystem functionality.
Events of type 5.7 "ToolDataSetModificationEventType" contain tool data update information that needs to be applied
to the local copy of the tool data.
The availability and status of the functionality is provided by the SynchronizationStatus variable.
The ToolDataSchema component of type 0:FileType represents the JSON schema that describes the created JSON
tool data file.
Image 17 shows an example sequence. More details are given at 4.22 "LocalToolDataSetType".

Local copy of tool data (kept current),
integration of all updates starting with version n+1

Initialize copy
with version n

Figure 17: Example sequence how to create and synchronize a local copy of the machine's tool data at client side

HEIDENHAIN | OPC UA Information Model | 10/2023 52

Core Information Model Overview | Tool Data Management

3D Model Files for Tools
The control can use 3D models of tools and their carriers for material removal simulation of an NC program before
execution and also during program run for collision monitoring and avoidance.
The prior validation of production-relevant data, such as the 3D models of the tools, prevents downtime in productive
operation and increases process reliability when processing orders in general.
With 3DModels , the component Validation provides information and additional functionality for 3D model tool data,
e.g., the possibility to check several technical requirements for the 3D model file in advance.
The RelatedToolDataItems component refers to all supported ToolDataItem instances that denote 3D models (e.g.,
for tools and tool carriers). Image 18 shows a ToolDataManagement example instance with two ToolDataItems
for the 3D models ToolShape and CarrierKinematics. The FileLocation and FileLocationManufacturer variables at
ToolDataItemType instances denote the correct storage location of their 3D model files in the FileSystem of the
Machine.
With the Validate3DModelFile method a File in the FileSystem can be validated for use as ToolShape or
CarrierKinematics. In case of a poor result, a description for each possible validation issue can be found at the
EnumValues property of the Issues argument description variable.
See Validation 3DModels in 4.16 "ToolDataManagementType", FileLocation in 4.19 "ToolDataItemType", and 3D
Model Files for Tools: Validation Issues List in Annex A: Tool Data Reference for more information.

HEIDENHAIN | OPC UA Information Model | 10/2023 53

Core Information Model Overview | Tool Data Management

Example:
ToolDataManagement with two
ToolDataItems denoting 3DModels
(Note: For reasons of clarity, several
other components are omitted.)

ToolDataManagementType:
ToolDataManagement

ToolDataRepresentationType:
ToolDataRepresentation

0:BaseObjectType:
ToolDataItems

ToolDataItemType:
1:ToolShape

Validate3DModelFile

0:FolderType:
RelatedToolDataItems

0:BaseObjectType:
Validation

0:BaseObjectType:
3DModels

ToolDataItemType:
1:CarrierKinematics

HasArgumentDescription

NodeId

Organizes

0:SelectionListType:
DataItem

0:MultiStateValueDiscreteType:
Issues

EnumValues

Selections

0:BaseDataVariableType:
FileLocation

NodeId

0:BaseDataVariableType:
FileLocation

NodeId

0:BaseDataVariableType:
FileLocationManufacturer

contains
BrowseNames of

Figure 18: Example ToolDataManagementType instance with Validation for 3DModels including RelatedToolDataItems

HEIDENHAIN | OPC UA Information Model | 10/2023 54

4
OPC UA

ObjectTypes

OPC UA ObjectTypes | MachineType

4.1 MachineType
Overview
A MachineType instance represents a HEIDENHAIN control-based manufacturing system and provides machine-
related information, monitoring, and control functions.
For an overview of the different components and concepts, see also 3.2 "Machine Instance".

Attributes
Table 11: MachineType Definition Attributes

Attribute Value

BrowseName MachineType

IsAbstract false

References
MachineType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 12: MachineType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object Error ErrorInterfaceType Mandatory

HasComponent Object State NCStateMachine-
Type

Mandatory

HasComponent Object ControlInfo ControlInfoType Mandatory

HasComponent Object ManufacturerInfo ManufacturerInfo-
Type

Mandatory

HasComponent Object Channels ChannelListType Mandatory

HasComponent Object Diagnostics BaseObjectType Optional

HasComponent Object FileSystem FileDirectoryType Optional

HasComponent Object OperatorInfo OperatorMachine-
InfoType

Mandatory

HasComponent Object OperatingTimes Operating-
TimesType

Mandatory

HasComponent Object Manufacturer-
Extensions

BaseObjectType Optional

HasComponent Object ToolData-
Management

ToolData-
ManagementType

Optional

HasComponent Variable HostComputerMode Boolean BaseDataVariable-
Type

Mandatory

HEIDENHAIN | OPC UA Information Model | 10/2023 56

OPC UA ObjectTypes | MachineType

Additional Subcomponents
Some components of MachineType have additional components, which are defined in Table 13.
Table 13: MachineType Additional Subcomponents

Source Path ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

Diagnostics HasComponent Object ServiceFiles ServiceFileInter-
faceType

Mandatory

FileSystem HasComponent Object TNC FileDirectory-
Type

Optional

FileSystem HasComponent Object PLC FileDirectory-
Type

Optional

Manufacturer-
Extensions

Organizes Object <Manufacturer-
Object>

BaseObject-
Type

OptionalPlace-
holder

Manufacturer-
Extensions

<Manufacturer-
Object>

HasComponent Variable <Boolean-
DataVariable>

Boolean DataItemType OptionalPlace-
holder

Manufacturer-
Extensions

<Manufacturer-
Object>

HasComponent Variable <Number-
DataVariable>

Number BaseAnalog-
Type

OptionalPlace-
holder

Manufacturer-
Extensions

<Manufacturer-
Object>

HasComponent Variable <String-
DataVariable>

String DataItemType OptionalPlace-
holder

Error
Error is a 4.4 "ErrorInterfaceType" instance that provides information about the errors and warnings that are currently
active on the machine.

State
State is a 4.2 "NCStateMachineType" instance that provides information and monitoring possibilities of the state of
the control.

ControlInfo
ControlInfo is a 4.8 "ControlInfoType" instance that provides information about the control; it is set by the control
manufacturer HEIDENHAIN.

ManufacturerInfo
ManufacturerInfo is a 4.10 "ManufacturerInfoType" instance that provides information about the machine; it is set by
the manufacturer of the machine.
The values of the different components can be set by the machine manufacturer within the machine's configuration
at CfgOemInfo (no. 131600).

Channels
Channels is a 4.13 "ChannelListType" instance and lists all control channels of the machine.
For every channel of the control an object of type 4.12 "ChannelType" is instantiated as a component of the Channels
object. The BrowseName and DisplayName of the channel instance nodes will be equal to their numeric identifier.
The NodeIds of component nodes of Channels are generated at first instantiation and are server-specific.
HEIDENHAIN recommends using BrowsePaths and the TranslateBrowsePathsToNodeIds service to create machine-
independent client applications. (If the data access configuration of an application is based on one fixed set of
NodeIds, it cannot be used for different machines.)

HEIDENHAIN | OPC UA Information Model | 10/2023 57

OPC UA ObjectTypes | MachineType

Diagnostics
Diagnostics is a BaseObjectType instance and provides information and functions for machine diagnostics.
The component ServiceFiles provides methods to create a service file and information to download the created
service file using the FileSystem. The ServiceFile functionality is always available, meaning even while the NC
software is not running (e.g., during Machine State NCIsNotConnected). See 4.23 "ServiceFileInterfaceType" for more
information.

FileSystem
FileSystem is a FileDirectoryType instance. It provides access to the TNC and PLC partitions of the machine's file
system according to OPC UA Part 20. For an overview of file system access in OPC UA, see 3.9 "File System Access".
More details, warnings and hints are given in 9 "Machine File System Access".
The access rights to files and directories via OPC UA are connected to the rights of the client user on the control.
Note that access to the PLC partition is restricted in general. Only users with corresponding rights on this partition
have access to it. So for example, browsing the PLC node is blocked if the client user doesn't have sufficient rights on
the PLC partition. A BadUserAccessDenied error code is returned in this case.
Further information: Setup, Testing and Running NC Programs User’s Manual, or Setup and Program Run User’s
Manual

OperatorInfo
OperatorInfo is a 4.9 "OperatorMachineInfoType" instance that provides information about the machine set by the
operator of the machine.
The values of the different components can be set within the machine's configuration at CfgMachineInfo
(no. 131700).

OperatingTimes
OperatingTimes is a 4.7 "OperatingTimesType" instance that provides several operating time variables like, for
example, the Machine's up-time.

ManufacturerExtensions
ManufacturerExtensions is a BaseObjectType instance and provides access to machine-specific information. Objects
and variables referenced by this node are configured by the machine manufacturer. They are not defined by the
HEIDENHAIN Core Information Model and can differ on various machines.
Machine-specific nodes are located within at least one additional namespace of the machine manufacturer.
Information about the namespaces can be found at the Server object's Namespaces list.
Depending on the machine configuration, ManufacturerExtensions Organizes several BaseObjectType instances with
variable component nodes of DataItemType or BaseAnalogType. As subtypes of the abstract Number DataType,
instances of BaseAnalogType can have SByte, Int16, Int32, or Double DataType.
The variables can also have the additional standard properties EURange, InstrumentRange, EngineeringUnits,
ValuePrecision or MaxStringLength to provide more information about the data value.
Read- or write-access to data values of the variables requires the corresponding user rights.
See 10 "Extensions of the Machine Manufacturer" for more information.

ToolDataManagement
ToolDataManagement is a 4.16 "ToolDataManagementType" instance that provides access to the tool data of the
machine.
Tool data access is possible during Machine State NCIsAvailable. Editing tool data requires the corresponding user
right.
See also 3.10 "Tool Data Management" for an overview.

HostComputerMode
Indication that the host computer mode on the control is active or inactive. If the host computer mode is active,
manual manipulation of the machine's production process is blocked to not disturb the remote control of, for
example, an automation system.

HEIDENHAIN | OPC UA Information Model | 10/2023 58

OPC UA ObjectTypes | NCStateMachineType

4.2 NCStateMachineType
Overview
An NCStateMachineType instance is a state machine that represents the state of the machine (see also 3.4 "NC State
Machine").

Attributes
Table 14: NCStateMachineType Definition Attributes

Attribute Value

BrowseName NCStateMachineType

IsAbstract false

References
NCStateMachineType is a subtype of FiniteStateMachineType, which means it inherits the InstanceDeclarations of
that Node.
Table 15: NCStateMachineType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

GeneratesEvent EventType NCTransitionEventType defined in 5.4

HasComponent Object NCIsNotConnected InitialStateType

HasComponent Object NCIsConnected StateType

HasComponent Object NCIsBooted StateType

HasComponent Object NCIsAvailable StateType

HasComponent Object NCIsInitializing StateType

HasComponent Object NCIsShuttingDown StateType

HasComponent Object NCIsNotConnected-
ToNCIsConnected

TransitionType

HasComponent Object NCIsConnectedTo-
NCIsNotConnected

TransitionType

HasComponent Object NCIsConnectedTo-
NCIsBooted

TransitionType

HasComponent Object NCIsConnectedTo-
NCIsShuttingDown

TransitionType

HasComponent Object NCIsBootedTo-
NCIsInitializing

TransitionType

HasComponent Object NCIsBooted-
ToNCIsNotConnected

TransitionType

HasComponent Object NCIsBootedTo-
NCIsShuttingDown

TransitionType

HasComponent Object NCIsAvailableTo-
NCIsShuttingDown

TransitionType

HasComponent Object NCIsAvailableTo-
NCIsNotConnected

TransitionType

HasComponent Object NCIsShuttingDown-
To-
NCIsNotConnected

TransitionType

HasComponent Object NCIsInitializingTo-
NCIsShuttingDown

TransitionType

HEIDENHAIN | OPC UA Information Model | 10/2023 59

OPC UA ObjectTypes | NCStateMachineType

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object NCIsInitializingTo-
NCIsAvailable

TransitionType

HasComponent Object NCIsInitializingTo-
NCIsNotConnected

TransitionType

HasComponent Variable 0:LastTransition Localized-
Text

FiniteTransition-
VariableType

Mandatory

NCTransitionEventType
An event reported when the state of a 4.2 "NCStateMachineType" instance changes.

NCIsNotConnected
The state where the OPC UA Server does not have a connection to the control. The status code of most of the
control-related data variables is set to BadOutOfService.

NCIsConnected
The state where the control is connected but not booted.

NCIsBooted
The state where the control is booted and power is still interrupted.

NCIsAvailable
The state where all subsystems of the control are running and initialized, and the control is available for operation or
running.

NCIsInitializing
The state where the control is initializing.

NCIsShuttingDown
The state where the control is shutting down.

NCIsNotConnectedToNCIsConnected
The initial state transition when the OPC UA Server established a connection to the control.

NCIsConnectedToNCIsNotConnected
The state transition from NCIsConnected to NCIsNotConnected.

NCIsConnectedToNCIsBooted
The state transition from NCIsConnected to NCIsBooted. It occurs during regular startup.

NCIsConnectedToNCIsShuttingDown
The state transition from NCIsConnected to NCIsShuttingDown.

NCIsBootedToNCIsInitializing
The state transition from NCIsBooted to NCIsInitializing. It occurs after powering on the already booted machine.

NCIsBootedToNCIsNotConnected
The state transition from NCIsBooted to NCIsNotConnected. It occurs on immediate connection loss of the Server to
the control.

NCIsBootedToNCIsShuttingDown
The state transition from NCIsBooted to NCIsShuttingDown. It occurs when shutting down without ever powering on
the machine.

NCIsAvailableToNCIsShuttingDown
The state transition from NCIsAvailable to NCIsShuttingDown. It occurs during regular shutdown of the control.

NCIsAvailableToNCIsNotConnected
The state transition from NCIsAvailable to NCIsNotConnected. It occurs on immediate connection loss.

HEIDENHAIN | OPC UA Information Model | 10/2023 60

OPC UA ObjectTypes | NCStateMachineType

NCIsShuttingDownToNCIsNotConnected
The state transition from NCIsShuttingDown to NCIsNotConnected. It occurs during regular shutdown when the OPC
UA Server loses the connection to the control.

NCIsInitializingToNCIsShuttingDown
The state transition from NCIsInitializing to NCIsShuttingDown.

NCIsInitializingToNCIsAvailable
The state transition from NCIsInitializing to NCIsAvailable. It occurs during regular startup.

NCIsInitializingToNCIsNotConnected
The state transition from NCIsInitializing to NCIsNotConnected. It occurs on immediate connection loss of the Server
to the control.

0:LastTransition
The ModellingRule has been changed to Mandatory.

HEIDENHAIN | OPC UA Information Model | 10/2023 61

OPC UA ObjectTypes | InterfaceType

4.3 InterfaceType
Overview
InterfaceType is an abstract type without components. It is the parent type of specific control interface subtypes.

Attributes
Table 16: InterfaceType Definition Attributes

Attribute Value

BrowseName InterfaceType

IsAbstract true

References
InterfaceType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 17: InterfaceType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasSubtype ObjectType ErrorInterfaceType defined in 4.4

HEIDENHAIN | OPC UA Information Model | 10/2023 62

OPC UA ObjectTypes | ErrorInterfaceType

4.4 ErrorInterfaceType
Overview
An ErrorInterfaceType instance provides actual error information of the machine.
See also 3.7 "Errors, Warnings and Notifications" for an overview of the HEIDENHAIN control error concept and its
representation in the address space.

Attributes
Table 18: ErrorInterfaceType Definition Attributes

Attribute Value

BrowseName ErrorInterfaceType

IsAbstract false

References
ErrorInterfaceType is a subtype of 4.3 "InterfaceType", which means it inherits the InstanceDeclarations of that Node.
Table 19: ErrorInterfaceType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object AllActiveErrors ErrorEntryListType Mandatory

HasComponent Method ClearAllErrors Mandatory

AllActiveErrors
AllActiveErrors is a 4.6 "ErrorEntryListType" instance and lists all errors that are currently active. It will also report
events of type 5.2 "ErrorClearedEventType" and 5.3 "ErrorOccurredEventType".

ClearAllErrors
When ClearAllErrors is called, a command is sent to clear all errors that are present at the control at the moment. For
each error that was cleared an ErrorClearedEvent is reported.
Note that a good status code does not indicate that all errors are cleared. If there are some errors that cannot be
cleared at the moment because of, for example, physical conditions or other constrains of the control, these errors
stay active.
Table 20: ClearAllErrors Attributes

Attribute Value

BrowseName ClearAllErrors

Table 21: ClearAllErrors Result Codes

Result Code Description

BadOutOfService Returned when the server has lost its internal connection to the control.

HEIDENHAIN | OPC UA Information Model | 10/2023 63

OPC UA ObjectTypes | ErrorEntryType

4.5 ErrorEntryType
Overview
An ErrorEntryType instance represents an active occurrence of an error on the machine. It contains several properties
that provide detailed information about the error.
See also 3.7 "Errors, Warnings and Notifications" for an overview of the HEIDENHAIN control error concept and its
representation in the address space.

Attributes
Table 22: ErrorEntryType Definition Attributes

Attribute Value

BrowseName ErrorEntryType

IsAbstract false

References
ErrorEntryType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 23: ErrorEntryType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable Action String PropertyType Mandatory

HasProperty Variable Cause String PropertyType Mandatory

HasProperty Variable Channel UInt32 PropertyType Mandatory

HasProperty Variable Class ErrorClass-
Type

PropertyType Mandatory

HasProperty Variable Group ErrorGroup-
Type

PropertyType Mandatory

HasProperty Variable Number UInt32 PropertyType Mandatory

HasProperty Variable NumberAsText String PropertyType Mandatory

HasProperty Variable Internals String PropertyType Mandatory

HasProperty Variable Location Error-
Location-
Type

PropertyType Mandatory

HasProperty Variable Text String PropertyType Mandatory

HasComponent Method Clear Mandatory

Action
A description of possible actions that can be taken to fix the error.

Cause
The cause that triggered the error.

Channel
The ID of the channel where the error originated.
The status code of the value is GoodNoData if the error does not belong to a channel.

Class
Classification of the error. The value of Class is a 7.1 "ErrorClassType" enumeration value.

Group
The group that the error belongs to. The value of Group is a 7.2 "ErrorGroupType" enumeration value.

HEIDENHAIN | OPC UA Information Model | 10/2023 64

OPC UA ObjectTypes | ErrorEntryType

Number
The number of the error.
Each error has a number. But because of, for example, the possibility parameterized error message texts, the number
is not a unique identifier of an error object.

NumberAsText
Error number as it is displayed on the control.

Internals
Internal error details as multi-line text.

Location
The location of the error. The value of Location is a 7.3 "ErrorLocationType" enumeration value.

Text
Error message text that is displayed on the controls error list.

Clear
By calling Clear a request is sent to the control to clear the error.
Not every error can be cleared immediately. If, for example, the cause or condition of the error like an open door is still
valid, the error cannot be cleared. The return code is good if the Clear request was successfully sent to the control; it
does not indicate that the error was cleared.
If the error is cleared it is removed from all 4.6 "ErrorEntryListType" instances and an ErrorClearedEvent is reported.
Table 24: Clear Attributes

Attribute Value

BrowseName Clear

Table 25: Clear Result Codes

Result Code Description

BadNodeIdUnknown Returned when the error has already been cleared, and the error entry node no longer
existed when the method was called.

BadObjectDeleted Returned when the error was already cleared when the server tried to perform the
clear, but the address space had not yet been updated.

BadInvalidState Returned when sending the Clear request to the control is currently not possible.

BadOutOfService Returned when the server has lost its internal connection to the control.

HEIDENHAIN | OPC UA Information Model | 10/2023 65

OPC UA ObjectTypes | ErrorEntryListType

4.6 ErrorEntryListType
Overview
An ErrorEntryListType instance groups 4.5 "ErrorEntryType" instances together in a list either by HasComponent or
Organizes references. An ErrorEntry is a component of exactly one ErrorEntryList and additionally it can be organized
by other ErrorEntryLists.
Next to creation and deletion of the ErrorEntries below the ErrorEntryList, events of type 5.1 "ErrorEventType"
(respectively events of the subtypes 5.3 "ErrorOccurredEventType" and 5.2 "ErrorClearedEventType") are emitted from
ErrorEntryListType instances.

Attributes
Table 26: ErrorEntryListType Definition Attributes

Attribute Value

BrowseName ErrorEntryListType

IsAbstract false

References
ErrorEntryListType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 27: ErrorEntryListType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

Organizes Object <OrganizedError-
Entry>

ErrorEntryType OptionalPlace-
holder

GeneratesEvent EventType ErrorEventType defined in 5.1

HasComponent Object <ComponentError-
Entry>

ErrorEntryType OptionalPlace-
holder

<OrganizedErrorEntry>
This is a placeholder for 4.5 "ErrorEntryType" instances that are added to the error entry list with an Organizes
reference.

ErrorEventType
ErrorEventType is an abstract Event indicating a change in a 4.6 "ErrorEntryListType" instance. It contains also all
information of the related error object.
See also 3.7 "Errors, Warnings and Notifications" for an overview of the HEIDENHAIN control error concept and its
representation in the address space.

<ComponentErrorEntry>
This is a placeholder for 4.5 "ErrorEntryType" instances that are added to the error entry list with a HasComponent
reference.

HEIDENHAIN | OPC UA Information Model | 10/2023 66

OPC UA ObjectTypes | OperatingTimesType

4.7 OperatingTimesType
Overview
An OperatingTimesType instance provides several operating time variables of a machine.
The version of the server in current NC software versions does not support subscription functionality for operating
time variables.

Attributes
Table 28: OperatingTimesType Definition Attributes

Attribute Value

BrowseName OperatingTimesType

IsAbstract false

References
OperatingTimesType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 29: OperatingTimesType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Variable ControlUpTime Duration BaseDataVariable-
Type

Mandatory

HasComponent Variable ProgramExecution-
Time

Duration BaseDataVariable-
Type

Mandatory

HasComponent Variable MachineUpTime Duration BaseDataVariable-
Type

Mandatory

ControlUpTime
Up-time of the control. This is the cumulative time that the control has been turned on since installation.

ProgramExecutionTime
Working time of the machine since installation. This is the cumulative machining time since installation (program is
running in Automatic or Single Block operating mode).

MachineUpTime
Up-time of the machine. This is the cumulative time that the machine has been on (no emergency stop) since
installation.

HEIDENHAIN | OPC UA Information Model | 10/2023 67

OPC UA ObjectTypes | ControlInfoType

4.8 ControlInfoType
Overview
A ControlInfoType instance provides information about the control of the machine.
See 3.3 "General Information about the Machine" and 4.1 "MachineType" for more information.

Attributes
Table 30: ControlInfoType Definition Attributes

Attribute Value

BrowseName ControlInfoType

IsAbstract false

References
ControlInfoType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 31: ControlInfoType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable Model String PropertyType Mandatory

HasProperty Variable Manufacturer String PropertyType Mandatory

HasComponent Object SoftwareVersions SoftwareVersion-
ListType

Mandatory

HasComponent Variable SIK String BaseDataVariable-
Type

Mandatory

Model
The control model name (e.g., TNC 640).

Manufacturer
The name of the manufacturer of the control.

SoftwareVersions
SoftwareVersions is a SoftwareVersionListType instance and lists software versions of the control.

SIK
The SIK is the unique identification number of a board inserted in the MC. The SIK number is necessary to unlock
additional software options.

HEIDENHAIN | OPC UA Information Model | 10/2023 68

OPC UA ObjectTypes | OperatorMachineInfoType

4.9 OperatorMachineInfoType
Overview
An OperatorMachineInfoType instance provides information about the machine set by the operator.
See 3.3 "General Information about the Machine" and 4.1 "MachineType" for more information.

Attributes
Table 32: OperatorMachineInfoType Definition Attributes

Attribute Value

BrowseName OperatorMachineInfoType

IsAbstract false

References
OperatorMachineInfoType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that
Node.
Table 33: OperatorMachineInfoType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ContactEmail String PropertyType Mandatory

HasProperty Variable ContactPhone-
Number

String PropertyType Mandatory

HasProperty Variable Department String PropertyType Mandatory

HasProperty Variable Image Image PropertyType Mandatory

HasProperty Variable InventoryNumber String PropertyType Mandatory

HasProperty Variable Location String PropertyType Mandatory

HasProperty Variable MachineNickname String PropertyType Mandatory

HasProperty Variable Responsibility String PropertyType Mandatory

ContactEmail
The e-mail address of the responsible person or department.

ContactPhoneNumber
The phone number of the responsible person or department.

Department
The department that the machine belongs to.

Image
An icon or image of the machine. It can be a JPG or PNG file.
Starting with NC software version 34059x-11 SP3 and 81760x-08 SP3, the DataType of the property is adapted
according to the data type of the represented image. If an image has been configured at the control, the
corresponding Image subtype ImagePNG or ImageJPG is used.

InventoryNumber
The resource planning inventory number of the machine.

Location
The description of the location of the machine.

MachineNickname
The nickname of the machine which makes it easily identifiable for operators.

Responsibility
The person or department responsible for the machine.

HEIDENHAIN | OPC UA Information Model | 10/2023 69

OPC UA ObjectTypes | ManufacturerInfoType

4.10 ManufacturerInfoType
Overview
A ManufacturerInfoType instance provides information about the machine from the machine manufacturer.
See 3.3 "General Information about the Machine" and 4.1 "MachineType" for more information.

Attributes
Table 34: ManufacturerInfoType Definition Attributes

Attribute Value

BrowseName ManufacturerInfoType

IsAbstract false

References
ManufacturerInfoType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 35: ManufacturerInfoType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable BuildYear UInt32 PropertyType Mandatory

HasProperty Variable Service String PropertyType Mandatory

HasProperty Variable ServiceEmail String PropertyType Mandatory

HasProperty Variable ServicePhone-
Number

String PropertyType Mandatory

HasProperty Variable Name String PropertyType Mandatory

HasProperty Variable ProductFamily String PropertyType Mandatory

HasProperty Variable ProductType String PropertyType Mandatory

HasProperty Variable SerialNumber String PropertyType Mandatory

HasProperty Variable Image Image PropertyType Mandatory

HasProperty Variable InstallationTime UtcTime PropertyType Mandatory

HasComponent Object SoftwareVersions SoftwareVersion-
ListType

Mandatory

BuildYear
The year the machine was built.

Service
The name of the department or engineer of the manufacturer responsible for servicing this machine.

ServiceEmail
The e-mail address of the department or engineer of the manufacturer responsible for servicing this machine.

ServicePhoneNumber
The telephone number of the department or engineer of the manufacturer responsible for servicing this machine.

Name
The name of the manufacturer of the machine.

ProductFamily
The name of the brand within the machine manufacturers group.

ProductType
The product type of the machine, containing the production series and size of the machine often written on the
machines front for example.

HEIDENHAIN | OPC UA Information Model | 10/2023 70

OPC UA ObjectTypes | ManufacturerInfoType

SerialNumber
The serial number of the machine.

Image
The icon or image of this machine type or manufacturer, it can be a JPG or PNG file.
Starting with NC software version 34059x-11 SP3 and 81760x-08 SP3, the DataType of the property is adapted
according to the data type of the represented image. If an image or icon has been configured at the control, the
corresponding Image subtype ImagePNG or ImageJPG is used.

InstallationTime
The date and time of installation of the machine. (The installation time is set within the machine's configuration.)
The status code BadSyntaxError indicates that the given value could not be converted to UtcTime format.

SoftwareVersions
SoftwareVersions is a 4.11 "SoftwareVersionListType" instance and lists software versions of the manufacturer (e.g.,
the PLC version).

HEIDENHAIN | OPC UA Information Model | 10/2023 71

OPC UA ObjectTypes | SoftwareVersionListType

4.11 SoftwareVersionListType
Overview
A SoftwareVersionListType instance provides a list of software version variables of several components of a
machine. It is used for example at the 4.8 "ControlInfoType" to describe the software of the control and their versions.

Attributes
Table 36: SoftwareVersionListType Definition Attributes

Attribute Value

BrowseName SoftwareVersionListType

IsAbstract false

References
SoftwareVersionListType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that
Node.
Table 37: SoftwareVersionListType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Variable PLC String BaseDataVariable-
Type

Optional

HasComponent Variable MCU String BaseDataVariable-
Type

Optional

HasComponent Variable NCKERN String BaseDataVariable-
Type

Optional

HasComponent Variable SPLC String BaseDataVariable-
Type

Optional

HasComponent Variable FS_MCU String BaseDataVariable-
Type

Optional

HasComponent Variable FS_CCU String BaseDataVariable-
Type

Optional

HasComponent Variable CCU String BaseDataVariable-
Type

Optional

HasComponent Variable <SoftwareVersion> String BaseDataVariable-
Type

OptionalPlace-
holder

PLC
The software version of the PLC program from the machine manufacturer.

MCU
The software version of a main computing unit.

NCKERN
The product and version number of the NC kernel.

SPLC
The software version of the SPLC program from the machine manufacturer.

FS_MCU
The software version of a functional safety main computing unit.

FS_CCU
The software version of a functional safety control computing unit.

CCU
The software version of a control computing unit.

HEIDENHAIN | OPC UA Information Model | 10/2023 72

OPC UA ObjectTypes | SoftwareVersionListType

<SoftwareVersion>
A placeholder for machine-specific components like a second CCU or machine manufacturer-specific software (e.g.,
when used at 4.10 "ManufacturerInfoType").

HEIDENHAIN | OPC UA Information Model | 10/2023 73

OPC UA ObjectTypes | ChannelType

4.12 ChannelType
Overview
A ChannelType instance represents an NC channel of the control. (An NC channel groups several axes and their
common attributes.) It provides information, settings and functions related to the execution of an NC program.
For an overview of the concepts and functionality, see 3.5 "Machining Channel".

Attributes
Table 38: ChannelType Definition Attributes

Attribute Value

BrowseName ChannelType

IsAbstract false

References
ChannelType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 39: ChannelType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable Id UInt32 PropertyType Mandatory

HasComponent Object ChannelActiveErrors ErrorEntryListType Mandatory

HasComponent Object Program ProgramType Mandatory

HasComponent Object CurrentTool BaseObjectType Optional

HasComponent Variable CutterLocation Cutter-
Location-
DataType

CutterLocation-
ArrayType

Mandatory

HasComponent Variable OperatingMode NCOpera-
tingMode

BaseDataVariable-
Type

Mandatory

HasComponent Variable FeedOverride UInt32 AnalogItemType Mandatory

HasComponent Variable SpeedOverride UInt32 AnalogItemType Mandatory

HasComponent Variable RapidOverride UInt32 AnalogItemType Mandatory

HasComponent Variable RapidTraverseActive Boolean BaseDataVariable-
Type

Mandatory

HasComponent Method ImportTool-
UsageCSV

Mandatory

HasComponent Method ImportToolUsage-
CSVByNodeId

Optional

Additional Subcomponents
Some components of the ChannelType have additional components, which are defined in Table 40.
Table 40: ChannelType Additional Subcomponents

Source Path ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

CurrentTool HasComponent Variable DatabaseId String BaseDataVariable-
Type

Mandatory

CurrentTool HasComponent Variable Identifier ToolRecord-
Identifier-
DataType

BaseDataVariable-
Type

Mandatory

CurrentTool HasComponent Variable Name String BaseDataVariable-
Type

Mandatory

HEIDENHAIN | OPC UA Information Model | 10/2023 74

OPC UA ObjectTypes | ChannelType

Id
The numeric identifier of the machining channel.

ChannelActiveErrors
ChannelActiveErrors is a 4.6 "ErrorEntryListType" instance and lists all error entries that are currently active on the NC
channel.
If an error or warning on the machine related to this NC channel occurs or is cleared the related event of type 5.1
"ErrorEventType" is also emitted from the ChannelActiveErrors node. See 3.7 "Errors, Warnings and Notifications" for a
description of the concept of channel-related errors and their representation in the address space.

CurrentTool
The CurrentTool component provides information to identify the currently used tool respectively the record.
The Identifier variable contains the tool record identifier of 7.10 "ToolRecordIdentifierDataType", consisting of the tool
number and the index. The Name variable provides the index-specific name of a tool. (See also "Terms", Page 24.)
The tool record identifier can be used to access the data of the tool. See 4.16 "ToolDataManagementType"
ToolDataAccess and 3.10 "Tool Data Management".
If the DatabaseId is managed as recommended by HEIDENHAIN, the variable contains the unique identifier of the
physical tool from the central tool (data) management system. The DatabaseId is independent of the tool record
identifier and equal for all indices of a tool.

Program
Program is a 4.14 "ProgramType" instance providing functions and information about the NC program of this
channel.

CutterLocation
The CutterLocation provides the coordinates of the current location of the cutter within the input coordinate system
(I-CS). The value of CutterLocation is an array of 7.7 "CutterLocationDataType" elements each representing one
coordinate.
The version of the server in current NC software versions does not support subscription functionality for this variable.

OperatingMode
The operating mode for this channel. The value of OperatingMode is a 7.4 "NCOperatingMode" enumeration value.
Note that not all of the possible values of the 7.4 "NCOperatingMode" enumeration can be set by a write request (or
are immediately changed by the control again). Some values cannot be set from remote in general like Other (return
code BadWriteNotSupported) and some are not possible while the control is in a state that does not allow it (e.g.,
while a program is running in Automatic mode (return code BadInvalidState)).

FeedOverride
The current feed override percentage. The absolute feed is related to the programmed feed rate, the machine
dynamics, and the feed override percentage. FeedOverride is a variable of AnalogItemType and provides its EURange
and EngineeringUnits.
Changing the feed override percentage by writing a new value to this variable can only be done by client users
with NC.RemoteProgram rights. If a client user has insufficient rights on the control the request is denied with
BadUserAccessDenied.
The versions of the server support subscription functionality for this variable, starting with NC software version 18
and Service Packs 17 SP02, 16 SP03, 34059x-11 SP07, and 81760x-08 SP07.
Subscribing the FeedOverride:
Client applications should set an appropriate sampling interval and reduce the received notifications according
to their interest using MonitoredItem DataChangeFilter with absolute or percent Deadband. See OPC UA Part 4
"MonitoredItem model" and "MonitoringFilter parameters" for DataChangeFilter.
Filter example: After a notification, the subsequent notification is sent if the new value differs by more than 5% from
the previously sent value. Minor value variations within the specified range are not reported.

SpeedOverride
The current speed override percentage. The absolute spindle speed is related to the programmed speed and
the speed override percentage. SpeedOverride is a variable of AnalogItemType and provides its EURange and
EngineeringUnits.

HEIDENHAIN | OPC UA Information Model | 10/2023 75

OPC UA ObjectTypes | ChannelType

Note that there are restrictions on which values are safe and allowed to set by a write request to this variable, for
example, too small values are automatically raised to the minimum value by the control.
Changing the speed override percentage by writing a new value to this variable can only be done by client users
with NC.RemoteProgram rights. If a client user has insufficient rights on the control the request is denied with
BadUserAccessDenied.
The versions of the server support subscription functionality for this variable, starting with NC software version 18
and Service Packs 17 SP02, 16 SP03, 34059x-11 SP07, and 81760x-08 SP07.
Subscribing the SpeedOverride:
Client applications should set an appropriate sampling interval and reduce the received notifications according
to their interest using MonitoredItem DataChangeFilter with absolute or percent Deadband. See OPC UA Part 4
"MonitoredItem model" and "MonitoringFilter parameters" for DataChangeFilter.
Filter example: After a notification, the subsequent notification is sent if the new value differs by more than 5% from
the previously sent value. Minor value variations within the specified range are not reported.

RapidOverride
The current rapid override percentage. The absolute rapid feed is related to the configured feed rate, the machine
dynamics, and the rapid feed override percentage. RapidOverride is a variable of AnalogItemType and provides its
EURange and EngineeringUnits.
Changing the rapid override percentage by writing a new value to this variable can only be done by client users
with NC.RemoteProgram rights. If a client user has insufficient rights on the control the request is denied with
BadUserAccessDenied.
The versions of the server support subscription functionality for this variable, starting with NC software version 18
and Service Packs 17 SP02, 16 SP03, 34059x-11 SP07, and 81760x-08 SP07.
Subscribing the RapidOverride:
Client applications should set an appropriate sampling interval and reduce the received notifications according
to their interest using MonitoredItem DataChangeFilter with absolute or percent Deadband. See OPC UA Part 4
"MonitoredItem model" and "MonitoringFilter parameters" for DataChangeFilter.
Filter example: After a notification, the subsequent notification is sent if the new value differs by more than 5% from
the previously sent value. Minor value variations within the specified range are not reported.

RapidTraverseActive
Indicates whether the rapid traverse mode is active.
If an NC block with FMAX programmed is executed then rapid traverse is active. Depending on this condition, either
the FeedOverride or the RapidOverride is active.

ImportToolUsageCSV
Import a tool usage file by providing the path to a tool usage CSV file present in the file system. This file can be used
to import the externally calculated tool run time into the control.
Note that depending on the machine configuration, the HEIDENHAIN control system calculates the tool run time
according to the actual machine dynamics and kinematics. If a precise run time is required, it should always be
calculated by the HEIDENHAIN control system.
Table 41: ImportToolUsageCSV Attributes

Attribute Value

BrowseName ImportToolUsageCSV

Signature
 ImportToolUsageCSV{
 [in] String ToolUsageCSVName
 };

Table 42: ImportToolUsageCSV Signature

Argument Description

ToolUsageCSVName Path of the comma-separated file to import. The CSV file contains the tool usage of
NC programs

HEIDENHAIN | OPC UA Information Model | 10/2023 76

OPC UA ObjectTypes | ChannelType

Table 43: ImportToolUsageCSV Result Codes

Result Code Description

BadInvalidArgument Returned when the validation of the input argument fails or the file referred to is
currently not usable as a tool usage CSV.

BadFileNotFound Returned when the file to be loaded could not be found.

Bad The file could not be used for the intended purpose.

BadOutOfService Returned when the server has lost its internal connection to the control.

ImportToolUsageCSVByNodeId
Import a tool usage file by providing the NodeId of the File object instance representing the CSV file in the file system.
This file can be used to import the externally calculated tool run time into the control.
Note that depending on the machine configuration, the HEIDENHAIN control system calculates the tool run time
according to the actual machine dynamics and kinematics. If a precise run time is required, it should always be
calculated by the HEIDENHAIN control system.
The functionality of this method is equal to ImportToolUsageCSV. This method is provided for convenience
to simplify the usage in case the file has a representation in the AddressSpace of the OPC UA NC Server. That
means that the corresponding File object instance is browsable starting at the TNC or PLC nodes of the Machine's
FileSystem. See 9 "Machine File System Access" for more information about file system access.
Table 44: ImportToolUsageCSVByNodeId Attributes

Attribute Value

BrowseName ImportToolUsageCSVByNodeId

Signature
 ImportToolUsageCSVByNodeId{
 [in] NodeId FileNodeId
 };

Table 45: ImportToolUsageCSVByNodeId Signature

Argument Description

FileNodeId NodeId of the File object instance representing the comma-separated file to import.
The CSV file contains the tool usage of NC programs.

Table 46: ImportToolUsageCSVByNodeId Result Codes

Result Code Description

BadInvalidArgument Returned when the validation of the input argument fails or the file referred to is
currently not usable as a tool usage CSV.

BadNotFound Returned when the provided NodeId is not valid or cannot be found in the AddressS-
pace.

Bad The file could not be used for the intended purpose.

BadOutOfService Returned when the server has lost its internal connection to the control.

HEIDENHAIN | OPC UA Information Model | 10/2023 77

OPC UA ObjectTypes | ChannelListType

4.13 ChannelListType
Overview
A ChannelListType instance groups 4.12 "ChannelType" instances together in a list.
It is used, for example, at the 4.1 "MachineType".

Attributes
Table 47: ChannelListType Definition Attributes

Attribute Value

BrowseName ChannelListType

IsAbstract false

References
ChannelListType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 48: ChannelListType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object <Channel> ChannelType OptionalPlace-
holder

<Channel>
This is a placeholder for 4.12 "ChannelType" instances that are added to the channel list.

HEIDENHAIN | OPC UA Information Model | 10/2023 78

OPC UA ObjectTypes | ProgramType

4.14 ProgramType
Overview
A ProgramType instance provides functions and information about NC programs.
An instance of type ProgramType contains information about which NC program is currently running, what part of
the program is being executed, and has an ExecutionState StateMachine with methods to control the selection and
execution of NC programs.
The Program reports 5.5 "ExecutionMessageEventType" events which are messages sent by the NC program on
specific NC program commands.
See also 3.6 "NC Program Execution Monitoring and Control" for an overview.

Attributes
Table 49: ProgramType Definition Attributes

Attribute Value

BrowseName ProgramType

IsAbstract false

References
ProgramType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 50: ProgramType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

GeneratesEvent EventType ExecutionMessageEventType defined in 5.5

HasComponent Object ExecutionState NCProgramState-
MachineType

Mandatory

HasComponent Variable ExecutionStack Program-
Position-
DataType

ProgramPosition-
ArrayType

Mandatory

HasComponent Variable Name String BaseDataVariable-
Type

Mandatory

HasComponent Variable CurrentCall String BaseDataVariable-
Type

Mandatory

Additional Subcomponents
Some components of ProgramType have additional components, which are defined in Table 51.
Table 51: ProgramType Additional Subcomponents

Source Path ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

Name HasProperty Variable FileNodeId NodeId PropertyType Optional

ExecutionMessageEventType
ExecutionMessageEventType events are messages sent by the NC program on specific NC program commands (FN
38: SEND). It can be used for communication between an NC program and a remote application.

ExecutionState
ExecutionState is a 4.15 "NCProgramStateMachineType" instance that represents the execution status of the NC
program. Additionally the ExecutionState contains methods to handle the NC program execution.

HEIDENHAIN | OPC UA Information Model | 10/2023 79

OPC UA ObjectTypes | ProgramType

ExecutionStack
The ExecutionStack provides the call stack of the program execution. The value of ExecutionStack is an array of 7.8
"ProgramPositionDataType" instances, each representing a program position (see also 6.2 "ProgramPositionArray-
Type").
The version of the server in current NC software versions does not support subscription functionality for this variable.
(When executing NC programs with very short blocks on a fast HEIDENHAIN control, the ExecutionStack can change
every 100 µs.) The ExecutionStack is not intended for continuous monitoring while a program is running, but for use
when the program is stopped or interrupted.

Name
Name of the selected NC program. The selected main program does not change while subprograms or macros of
the machine manufacturer are executed.
Name has an optional property FileNodeId. If the selected NC program file has a representation within the Machine's
FileSystem, FileNodeId contains the NodeId of this File object instance. (See 9 "Machine File System Access" for
more information about file system access.) If the NC program file does not have a representation within the address
space (e.g., if it is not stored within the TNC or PLC partitions of the machine's file system), the value is empty
with StatusCode GoodNoData. Note that access to this information is also protected by user access rights. If the
StatusCode of the value is BadUserAccessDenied, the user does not have the right to access the corresponding file.

CurrentCall
The CurrentCall variable contains the name of the subprogram that is currently being executed. The variable value is
empty if no subprogram is called. (Macros of the machine manufacturer are not considered.)

HEIDENHAIN | OPC UA Information Model | 10/2023 80

OPC UA ObjectTypes | NCProgramStateMachineType

4.15 NCProgramStateMachineType
Overview
An NCProgramStateMachineType instance is a state machine that represents the execution status of an NC program.
NCProgramStateMachineType also contains methods to handle the NC program execution.
For an overview about the representation of an NC program as OPC UA FiniteStateMachine, see 3.6 "NC Program
Execution Monitoring and Control".

Attributes
Table 52: NCProgramStateMachineType Definition Attributes

Attribute Value

BrowseName NCProgramStateMachineType

IsAbstract false

References
NCProgramStateMachineType is a subtype of FiniteStateMachineType, which means it inherits the
InstanceDeclarations of that Node.
Table 53: NCProgramStateMachineType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

GeneratesEvent EventType NCTransitionEventType defined in 5.4

HasComponent Object Error StateType

HasComponent Object Finished StateType

HasComponent Object Idle StateType

HasComponent Object Interrupted StateType

HasComponent Object Running StateType

HasComponent Object Stopped StateType

HasComponent Object NotSelected InitialStateType

HasComponent Object ErrorToIdle TransitionType

HasComponent Object ErrorToInterrupted TransitionType

HasComponent Object FinishedToIdle TransitionType

HasComponent Object IdleToNotSelected TransitionType

HasComponent Object IdleToRunning TransitionType

HasComponent Object InterruptedToIdle TransitionType

HasComponent Object InterruptedTo-
Running

TransitionType

HasComponent Object RunningToError TransitionType

HasComponent Object RunningToFinished TransitionType

HasComponent Object RunningTo-
Interrupted

TransitionType

HasComponent Object RunningToStopped TransitionType

HasComponent Object StoppedToIdle TransitionType

HasComponent Object NotSelectedToIdle TransitionType

HasComponent Object StoppedToRunning TransitionType

HasComponent Object StoppedToError TransitionType

HasComponent Object IdleToIdle TransitionType

HEIDENHAIN | OPC UA Information Model | 10/2023 81

OPC UA ObjectTypes | NCProgramStateMachineType

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object InterruptedToError TransitionType

HasComponent Object FinishedToError TransitionType

HasComponent Variable 0:LastTransition Localized-
Text

FiniteTransition-
VariableType

Mandatory

HasComponent Method Cancel Mandatory

HasComponent Method Deselect Mandatory

HasComponent Method SelectProgram Mandatory

HasComponent Method SelectProgram-
ByNodeId

Optional

HasComponent Method Start Mandatory

HasComponent Method Stop Mandatory

HasComponent Method SelectBlockNumber Mandatory

NCTransitionEventType
An event reported when the state of a 4.2 "NCStateMachineType" instance changes.

Error
The state when an error has occurred during execution of an NC program.

Finished
The state when an NC program has finished execution.

Idle
The state when an NC program is selected and the execution can be started.

Interrupted
The state when a running NC program was stopped (e.g., by NC Stop or remotely by a Stop method call).

Running
The state when a selected NC program is being executed.

Stopped
The state when a program execution has stopped but has not yet been canceled. Many conditions can trigger a stop,
for example, conclusion of a block in single block mode, completed execution of an M0 or stop block, completed
execution of an M1 block if a conditional stop has been defined, a manual stop by the operator, or a stop caused by a
machine manufacturer function inside the PLC or a macro.

NotSelected
The state when no NC program is selected.

ErrorToIdle
The state transition from Error to Idle. Causes of this transition can be a Cancel called from remote or an internal stop
of the control.

ErrorToInterrupted
The state transition from Error to Interrupted. It occurs when all Error state-related errors are cleared on the machine.
The program execution can be started afterwards again.

FinishedToIdle
The state transition from Finished to Idle (e.g., after the execution of an M30 block or END PGM).

IdleToNotSelected
The state transition from Idle to NotSelected. Cause of the transition is that the program has been deselected (e.g.,
using the Deselect method or manually on the control).

HEIDENHAIN | OPC UA Information Model | 10/2023 82

OPC UA ObjectTypes | NCProgramStateMachineType

IdleToRunning
The state transition from Idle to Running. It occurs when first starting a program.

InterruptedToIdle
The state transition from Interrupted to Idle. It occurs on SelectProgram, Cancel in Single Block mode or after an
internal stop of the control.

InterruptedToRunning
The state transition from Interrupted to Running. It occurs when the program is restarted after an interruption.

RunningToError
The state transition from Running to Error. Cause of the transition is an error occurring within execution of an NC
program.

RunningToFinished
The state transition from Running to Finished. It occurs on program completion.

RunningToInterrupted
The state transition from Running to Interrupted. It occurs after Stop invocation in Automatic mode or an NC stop.

RunningToStopped
The state transition from Running to Stopped. It occurs after block execution in single block mode or an M0 block for
example, see Stopped state.

StoppedToIdle
The state transition from Stopped to Idle. It occurs on program Select or Cancel in single block mode or after an
internal stop of the control.

NotSelectedToIdle
The state transition from NotSelected to Idle. It occurs when an NC program was selected using the SelectProgram
method, manually at the machine or via other remote control possibilities.

StoppedToRunning
The state transition from Stopped to Running. It occurs on program resume using Start in Single Block mode remotely
or manually at the machine.

StoppedToError
The state transition from Stopped to Error. Cause of the transition is a new error while the program is in Stopped
state.

IdleToIdle
The state transition from Idle to Idle. This transition occurs when a program is selected in the Idle state.

InterruptedToError
The state transition from Interrupted to Error. If an error occurred while the program is in the Interrupted state.

FinishedToError
The state transition from Finished to Error.

0:LastTransition
The ModellingRule has been changed to Mandatory.

Cancel
Cancels the execution of an erroneous, stopped, interrupted or finished NC program and sets the program execution
pointer to the first block.
Table 54: Cancel Attributes

Attribute Value

BrowseName Cancel

HEIDENHAIN | OPC UA Information Model | 10/2023 83

OPC UA ObjectTypes | NCProgramStateMachineType

Table 55: Cancel Result Codes

Result Code Description

BadInvalidState Returned when the program execution state does not allow canceling the program
execution (e.g., if a program is running).

BadOutOfService Returned when the server has lost its internal connection to the control.

Deselect
Deselects the selected NC program.
Table 56: Deselect Attributes

Attribute Value

BrowseName Deselect

Table 57: Deselect Result Codes

Result Code Description

BadInvalidState Returned when the program execution state does not allow deselecting the program
(e.g., if a program is running).

BadUserAccessDenied Returned when the client user has insufficient rights on the control.

BadOutOfService Returned when the server has lost its internal connection to the control.

SelectProgram
Select an NC program for execution. The given program name will be loaded from disk for execution by the control.
Table 58: SelectProgram Attributes

Attribute Value

BrowseName SelectProgram

Signature
 SelectProgram{
 [in] String ProgramName
 };

Table 59: SelectProgram Signature

Argument Description

ProgramName String containing the full path name of the NC program to be selected

Table 60: SelectProgram Result Codes

Result Code Description

BadInvalidState Returned when the operating mode or the program execution state does not allow
selecting a program (e.g., if a program is running or the operating mode is Manual).

BadFileNotFound Returned when the file to be loaded could not be found.

BadInvalidArgument Returned when wrong arguments were provided.
Note that the maximum supported program path length on controls is 255 charac-
ters.
Further information: Setup, Testing and Running NC Programs User’s Manual, or
Setup and Program Run User’s Manual

BadNoDataAvailable Returned when the file exists but is not accessible in general.

BadUserAccessDenied Returned when the client user has insufficient rights on the control.

BadOutOfService Returned when the server has lost its internal connection to the control.

HEIDENHAIN | OPC UA Information Model | 10/2023 84

OPC UA ObjectTypes | NCProgramStateMachineType

SelectProgramByNodeId
Select an NC program using the NodeId of the corresponding File object node. The program will be loaded from disk
for execution by the control.
See also 9.4 "Warnings and Important Hints" regarding access to the machine's file system within 9 "Machine File
System Access".
Table 61: SelectProgramByNodeId Attributes

Attribute Value

BrowseName SelectProgramByNodeId

Signature
 SelectProgramByNodeId{
 [in] NodeId FileNodeId
 };

Table 62: SelectProgramByNodeId Signature

Argument Description

FileNodeId NodeId of the file object node representing the NC program to be selected

Table 63: SelectProgramByNodeId Result Codes

Result Code Description

BadInvalidState Returned when the operating mode or the program execution state does not allow
selecting a program (e.g., if a program is running or the operating mode is Manual).

BadNodeIdUnknown Returned when the given NodeId refers to a node that does not exist.

BadFileNotFound Returned when the file to be loaded could not be found.

BadInvalidArgument Returned when wrong arguments were provided.
Note that the maximum supported program path length on controls is 255 charac-
ters.
Further information: Setup, Testing and Running NC Programs User’s Manual, or
Setup and Program Run User’s Manual

BadNoDataAvailable Returned when the file exists but is not accessible in general.

BadUserAccessDenied Returned when the client user has insufficient rights on the control.

BadOutOfService Returned when the server has lost its internal connection to the control.

Start
Start the selected NC program. The support of this method is machine-specific.
An NC start can only be executed if the machine-specific PLC program of the machine manufacturer supports an
external start of NC programs (ApiChn.NN_ChnNcStartExternRequest). A successful start of the NC program results
in a state change of the state machine.
Table 64: Start Attributes

Attribute Value

BrowseName Start

Table 65: Start Result Codes

Result Code Description

BadInvalidState Returned when the operating mode or the program execution state does not allow
starting a program (e.g., if no program is selected or the operating mode is Manual).

BadNoDataAvailable Returned when the file exists but is not accessible in general.

BadUserAccessDenied Returned when the client user has insufficient rights on the control. (E.g. the right
NC.RemoteProgramRun is needed to start an NC program.)

HEIDENHAIN | OPC UA Information Model | 10/2023 85

OPC UA ObjectTypes | NCProgramStateMachineType

Result Code Description

BadOutOfService Returned when the server has lost its internal connection to the control.

Stop
Stop execution of the active NC program.
Table 66: Stop Attributes

Attribute Value

BrowseName Stop

Table 67: Stop Result Codes

Result Code Description

BadOutOfService Returned when the server has lost its internal connection to the control.

SelectBlockNumber
Set the NC program execution pointer to the selected block number.
Table 68: SelectBlockNumber Attributes

Attribute Value

BrowseName SelectBlockNumber

Signature
 SelectBlockNumber{
 [in] UInt32 BlockNumber
 };

Table 69: SelectBlockNumber Signature

Argument Description

BlockNumber The block number of the NC program to be selected

Table 70: SelectBlockNumber Result Codes

Result Code Description

BadInvalidArgument Returned when no valid argument was provided, no program loaded, or the argument
was not a number.

BadInvalidState Returned when the operating mode or the program execution state does not allow
selecting a block (e.g., if a program is running or the operating mode is Manual).

BadUserAccessDenied Returned when the client user has insufficient rights on the control.

BadOutOfService Returned when the server has lost its internal connection to the control.

HEIDENHAIN | OPC UA Information Model | 10/2023 86

OPC UA ObjectTypes | ToolDataManagementType

4.16 ToolDataManagementType
Overview
The ToolDataManagementType gathers the tool data management functionalities of a machine.
A ToolDataManagementType instance provides read and write access to the tool data, events, and information about
the tool data items and tool types.
An overview is given at 3.10 "Tool Data Management".
Note that tool data access requires an active and fully initialized NC software. ToolDataRepresentation components
are instantiated when the Machine reaches the State NCIsAvailable. The functionality of LocalDataSet, Validation, and
ToolDataAccess methods is available only during State NCIsAvailable.

Attributes
Table 71: ToolDataManagementType Definition Attributes

Attribute Value

BrowseName ToolDataManagementType

IsAbstract false

References
ToolDataManagementType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that
Node.
Table 72: ToolDataManagementType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object Notifications BaseObjectType Mandatory

HasComponent Object LocalDataSet LocalToolDataSet-
Type

Mandatory

HasComponent Object ToolDataAccess BaseObjectType Mandatory

HasComponent Object ToolDataRepresen-
tation

ToolDataRepresen-
tationType

Mandatory

HasComponent Object Validation BaseObjectType Optional

HEIDENHAIN | OPC UA Information Model | 10/2023 87

OPC UA ObjectTypes | ToolDataManagementType

Additional Subcomponents
Some components of ToolDataManagementType have additional components, which are defined in Table 73.
Table 73: ToolDataManagementType Additional Subcomponents

Source Path ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

ToolData-
Access

HasComponent Method CreateNew-
ToolRecord

Mandatory

ToolData-
Access

HasComponent Method CreateNew-
ToolRecord-
WithId

Mandatory

ToolData-
Access

HasComponent Method DeleteTool-
Record

Mandatory

ToolData-
Access

HasComponent Method FindTool-
Record-
Identifiers-
ByName

Mandatory

ToolData-
Access

HasComponent Method GetAllTool-
Numbers

Optional

ToolData-
Access

HasComponent Method GetAllTool-
Numbers-
AssignedTo-
Pockets

Mandatory

ToolData-
Access

HasComponent Method GetAssigned-
PocketNumbers

Mandatory

ToolData-
Access

HasComponent Method GetToolData Mandatory

ToolData-
Access

HasComponent Method GetToolData-
ByCategory

Mandatory

ToolData-
Access

HasComponent Method GetToolData-
Items

Mandatory

ToolData-
Access

HasComponent Method GetToolIndices Mandatory

ToolData-
Access

HasComponent Method GetToolNum-
ber

Mandatory

ToolData-
Access

HasComponent Method GetToolType Mandatory

ToolData-
Access

HasComponent Method UpdateTool-
DataItems

Mandatory

ToolData-
Access

HasComponent Object Argument-
Descriptions

BaseObjectType Optional

ToolData-
Access
Argument-
Descriptions

HasComponent Variable ToolNumber UInt32 BaseAnalogType Optional

ToolData-
Access
Argument-
Descriptions

HasComponent Variable ToolIndex Byte BaseAnalogType Optional

Validation HasComponent Object 3DModels BaseObjectType Optional

HEIDENHAIN | OPC UA Information Model | 10/2023 88

OPC UA ObjectTypes | ToolDataManagementType

Source Path ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

Validation
3DModels

HasComponent Method Validate3D-
ModelFile

Mandatory

Validation
3DModels

HasComponent Object Argument-
Descriptions

BaseObjectType Optional

Validation
3DModels
Argument-
Descriptions

HasComponent Variable DataItem Qualified-
Name

SelectionListType Optional

Validation
3DModels
Argument-
Descriptions

HasComponent Variable Issues UInt32[] MultiStateValue-
DiscreteType

Optional

Validation
3DModels

HasComponent Object RelatedTool-
DataItems

FolderType Mandatory

Validation
3DModels
RelatedTool-
DataItems

Organizes Object <ToolDataItem> ToolDataItem-
Type

OptionalPlace-
holder

Additional References
Some components of ToolDataManagementType have additional references, which are defined in Table 74.
Table 74: ToolDataManagementType Additional References

Source Path ReferenceType IsForward Target Path

Notifications GeneratesEvent True ToolLockedEventType

LocalDataSet GeneratesEvent True ToolDataSetModificationEventType

Notifications
Notifications is the source node of tool data related events like the 5.9 "ToolLockedEventType".

LocalDataSet
The LocalDataSet component provides the functionality to synchronize a local copy of the machine's tool data (see
4.22 "LocalToolDataSetType"). It is the source node of events of type 5.7 "ToolDataSetModificationEventType".

ToolDataAccess
The ToolDataAccess component is used to group methods to access the machine's tool data. The methods allow
operations like the creation of tool records, reading tool data and updating the data.
Some of the methods use variables for additional argument descriptions. The ArgumentDescriptions object
references the variables shared by multiple methods. If the variable describes an optional argument of a method, the
variable's Value contains the default value.
A client user can only edit tool data if he has the corresponding NC.EditToolTable right.

HEIDENHAIN | OPC UA Information Model | 10/2023 89

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess CreateNewToolRecord
Creates a new tool record for a tool of the given tool type. The data items are initialized with the default values.
The tool type is specified using the BrowseName (data type QualifiedName) of a ToolType listed at the
ToolDataRepresentation component.
Depending on the control type and software version, different types of tools are available. ("Table 216: HEIDENHAIN
Tool Types" in "Annex A: Tool Data Reference" lists the unique string identifiers of the tool types.)
The arguments ToolNumber and ToolIndex are optional. If the ToolNumber is not provided or 0, the record is
"appended at the end" of the existing tool records using the next number. If the ToolIndex is not provided, the record
with index 0 is created.
Table 75: CreateNewToolRecord Attributes

Attribute Value

BrowseName CreateNewToolRecord

Signature
 CreateNewToolRecord{
 [in] QualifiedName ToolType,
 [in] UInt32 ToolNumber,
 [in] Byte ToolIndex,
 [out] UInt32 NewToolNumber,
 [out] Byte NewToolIndex
 };

Table 76: CreateNewToolRecord Signature

Argument Description

ToolType The type of tool to create; the BrowseName of a ToolTypeDescriptionType instance at
the ToolDataRepresentation component.

ToolNumber If given, create the new tool record for this tool number; otherwise generate it

ToolIndex If given, create the new tool record with this index. If an index is given, the ToolNum-
ber is also required

NewToolNumber Tool number of the newly created tool record

NewToolIndex Tool index of the newly created tool record

Along with the InputArguments and OutputArguments properties, the CreateNewToolRecord method has the
references listed in Table 77.
Table 77: CreateNewToolRecord Additional References

ReferenceType IsForward Target Path

HasOptionalInputArgumentDescription True ToolDataAccess ArgumentDescriptions ToolNumber

HasOptionalInputArgumentDescription True ToolDataAccess ArgumentDescriptions ToolIndex

Table 78: CreateNewToolRecord Result Codes

Result Code Description

BadInvalidState The tool record cannot be created at the moment. Possible reasons are:
The control is not active and fully initialized. Tool data access is possible during
Machine State NCIsAvailable.
At least one of the internal tool tables is locked for editing by the operator at the
machine or another external system.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.

BadEntryExists The tool number already exists.

BadOutOfService Returned when the server has lost its internal connection to the control.

HEIDENHAIN | OPC UA Information Model | 10/2023 90

OPC UA ObjectTypes | ToolDataManagementType

Result Code Description

BadUserAccessDenied Returned when the client user has insufficient rights on the control. (E.g. the NC.Edit-
ToolTable right is needed to edit tool data.)

BadInternalError An error occurred during execution of internal requests to create the related tool
records.

BadUnexpectedError Some other error occurred.

Background information:
Depending on the tool type, the data is stored internally in more than one tool data table. The method automatically
creates the records in the relevant tables. For touch probes, the record containing the additional data is linked via the
TouchprobeRecord data item.
For more information about the tool data items and their mapping to the internal tables, see "Annex A: Tool Data
Reference".

HEIDENHAIN | OPC UA Information Model | 10/2023 91

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess CreateNewToolRecordWithId
Creates a new tool record for a tool of the given tool type similar to CreateNewToolRecord.
The method is intended for use with unique tool identifiers (database ID) of a central tool management system.
The ToolNumber is optional. A new record with index 0 for the main tool is created and the DatabaseId data item
initialized with the given ToolDatabaseId.
Additional indices can be added using the CreateNewToolRecord method.
See also "Terms", Page 24.
Table 79: CreateNewToolRecordWithId Attributes

Attribute Value

BrowseName CreateNewToolRecordWithId

Signature
 CreateNewToolRecordWithId{
 [in] QualifiedName ToolType,
 [in] String ToolDatabaseId,
 [in] UInt32 ToolNumber,
 [out] UInt32 NewToolNumber,
 [out] Byte NewToolIndex
 };

Table 80: CreateNewToolRecordWithId Signature

Argument Description

ToolType Name of the tool type to create; the BrowseName of a ToolTypeDescriptionType
instance at the ToolDataRepresentation component.

ToolDatabaseId The identifier from the central tool management system

ToolNumber If given, create the new tool record for this tool number; otherwise generate it

NewToolNumber Tool number of the newly created tool record

NewToolIndex Tool index of the newly created tool record

Along with the InputArguments and OutputArguments properties, the CreateNewToolRecordWithId method has the
references listed in Table 81.
Table 81: CreateNewToolRecordWithId Additional References

ReferenceType IsForward Target Path

HasOptionalInputArgumentDescription True ToolDataAccess ArgumentDescriptions ToolNumber

Table 82: CreateNewToolRecordWithId Result Codes

Result Code Description

BadInvalidState The tool record cannot be created at the moment. Possible reasons are:
The control is not active and fully initialized. Tool data access is possible during
Machine State NCIsAvailable.
At least one of the internal tool tables is locked for editing by the operator at the
machine or another external system.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.

BadOutOfService Returned when the server has lost its internal connection to the control.

HEIDENHAIN | OPC UA Information Model | 10/2023 92

OPC UA ObjectTypes | ToolDataManagementType

Result Code Description

BadUserAccessDenied Returned when the client user has insufficient rights on the control. (E.g. the NC.Edit-
ToolTable right is needed to edit tool data.)

BadInternalError An error occurred during execution of internal requests to create the related tool
records.

BadUnexpectedError Some other error occurred.

HEIDENHAIN | OPC UA Information Model | 10/2023 93

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess DeleteToolRecord
Deletes the specified tool record.
If a tool is listed in a magazine, the record of the main tool (the record with index 0) is protected from deletion. If a
tool is in use, all of its records are protected from deletion.
Table 83: DeleteToolRecord Attributes

Attribute Value

BrowseName DeleteToolRecord

Signature
 DeleteToolRecord{
 [in] UInt32 ToolNumber,
 [in] Byte ToolIndex
 };

Table 84: DeleteToolRecord Signature

Argument Description

ToolNumber The number of the tool record to delete

ToolIndex The index of the record to delete; if omitted, the record with index 0 is deleted.

Along with the InputArguments and OutputArguments properties, the DeleteToolRecord method has the references
listed in Table 85.
Table 85: DeleteToolRecord Additional References

ReferenceType IsForward Target Path

HasArgumentDescription True ToolDataAccess ArgumentDescriptions ToolNumber

HasOptionalInputArgumentDescription True ToolDataAccess ArgumentDescriptions ToolIndex

Table 86: DeleteToolRecord Result Codes

Result Code Description

BadInvalidState The tool record cannot be deleted at the moment. Possible reasons are:
The control is not active and fully initialized. Tool data access is possible during
Machine State NCIsAvailable.
The tool record is locked for editing by the operator at the machine or another
external system.

BadNoEntryExists The addressed tool record does not exist.

BadNotSupported The operation is not supported by the server.

BadNoDeleteRights The tool is listed in a magazine or belongs to a tool in use. Deleting the tool record is
not permitted.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.

BadOutOfService Returned when the server has lost its internal connection to the control.

BadUserAccessDenied Returned when the client user has insufficient rights on the control. (E.g. the NC.Edit-
ToolTable right is needed to edit tool data.)

BadInternalError An error occurred during execution of internal requests to delete the related tool
records.

BadUnexpectedError Some other error occurred.

Background information:
DeleteToolRecord deletes the tool record from all relevant internal tool data tables. If it is a tool of type touch probe,
the record in the touch probe table is also deleted—if no other tool record refers to it.

HEIDENHAIN | OPC UA Information Model | 10/2023 94

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess FindToolRecordIdentifiersByName
Returns a list of ToolRecordIdentifiers where the value of the Name data item is equal to the given ToolName.
Table 87: FindToolRecordIdentifiersByName Attributes

Attribute Value

BrowseName FindToolRecordIdentifiersByName

Signature
 FindToolRecordIdentifiersByName{
 [in] String ToolName,
 [out] ToolRecordIdentifierDataType[] ToolRecordIdentifiers
 };

Table 88: FindToolRecordIdentifiersByName Signature

Argument Description

ToolName The value to search at the Name ToolDataItem of tool records

ToolRecordIdentifiers Identifiers of all tool records matching the given ToolName

Table 89: FindToolRecordIdentifiersByName Result Codes

Result Code Description

BadInvalidState The control is not active and fully initialized and access to tool data is not possible at
the moment. Tool data access is possible during Machine State NCIsAvailable.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.

BadNotFound No tool record with the given tool Name has been found.

BadInternalError An error occurred during execution of an internal request while searching for the tool
records.

BadUnexpectedError Some other error occurred.

BadOutOfService Returned when the server has lost its internal connection to the control.

HEIDENHAIN | OPC UA Information Model | 10/2023 95

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess GetAllToolNumbers
Returns a list of tool numbers that are present in the machine's tool memory (the tool table, for example, tool.t).
If there are several records for one tool with different indices, the tool number is in the list only once.
The method was added with version 1.04. It is supported by the OPC UA NC Server starting with NC software version
17 SP01, see "Associated HEIDENHAIN CNC Controls", Page 15.
Table 90: GetAllToolNumbers Attributes

Attribute Value

BrowseName GetAllToolNumbers

Signature
 GetAllToolNumbers{
 [out] UInt32[] ToolNumbers
 };

Table 91: GetAllToolNumbers Signature

Argument Description

ToolNumbers List of all known tool numbers

Table 92: GetAllToolNumbers Result Codes

Result Code Description

BadInvalidState The control is not active and fully initialized and access to tool data is not possible at
the moment. Tool data access is possible during Machine State NCIsAvailable.

BadNotFound There are no tools listed in the tool memory.

BadOutOfService Returned when the server has lost its internal connection to the control.

BadInternalError An error occurred during execution of an internal request while reading the tool
numbers.

BadUnexpectedError Some other error occurred.

Uncertain Some of the tool records have non-conforming record identifiers. The provided list
might not be complete.

HEIDENHAIN | OPC UA Information Model | 10/2023 96

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess GetAllToolNumbersAssignedToPockets
Returns a list of tool numbers that are listed in the machine's magazines (the pocket table).
The list is not ordered and does not contain tool number duplicates, meaning that if a tool is listed twice in the
magazines, the tool number is in the list only once.
Note that if a tool's number is listed in a magazine, the physical tool is not necessarily in the machine! The pocket
may only be reserved for the tool. The management of tool magazines is specific to the machine manufacturer.
Table 93: GetAllToolNumbersAssignedToPockets Attributes

Attribute Value

BrowseName GetAllToolNumbersAssignedToPockets

Signature
 GetAllToolNumbersAssignedToPockets{
 [out] UInt32[] ToolNumbers
 };

Table 94: GetAllToolNumbersAssignedToPockets Signature

Argument Description

ToolNumbers Unordered list of tool numbers without duplicates

Table 95: GetAllToolNumbersAssignedToPockets Result Codes

Result Code Description

BadInvalidState The control is not active and fully initialized and access to tool data is not possible at
the moment. Tool data access is possible during Machine State NCIsAvailable.

BadNotFound There are no tools listed in the magazines.

BadOutOfService Returned when the server has lost its internal connection to the control.

BadInternalError An error occurred during execution of an internal request while reading the tool
numbers.

BadUnexpectedError Some other error occurred.

HEIDENHAIN | OPC UA Information Model | 10/2023 97

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess GetAssignedPocketNumbers
Returns a list of magazine pocket identifiers that are assigned to the tool number.
Note that if a tool's number is assigned to a pocket, the physical tool is not necessarily in this pocket! The pocket may
only be reserved for the tool (e.g., before the tool is loaded into the machine). The management of tool magazines is
specific to the machine manufacturer.
Table 96: GetAssignedPocketNumbers Attributes

Attribute Value

BrowseName GetAssignedPocketNumbers

Signature
 GetAssignedPocketNumbers{
 [in] UInt32 ToolNumber
 [out] MagazinePocketIdentifierDataType[] ToolPockets
 };

Table 97: GetAssignedPocketNumbers Signature

Argument Description

ToolNumbers The tool number to find in the magazines

ToolPockets List of magazine and pocket numbers occupied by the given ToolNumber

Along with the InputArguments and OutputArguments properties, the GetAssignedPocketNumbers method has the
references listed in Table 98.
Table 98: GetAssignedPocketNumbers Additional References

ReferenceType IsForward Target Path

HasArgumentDescription True ToolDataAccess ArgumentDescriptions ToolNumber

Table 99: GetAssignedPocketNumbers Result Codes

Result Code Description

BadInvalidState The control is not active and fully initialized and access to tool data is not possible at
the moment. Tool data access is possible during Machine State NCIsAvailable.

BadNotFound The tool number has not been found in the magazines (the pocket table).

BadOutOfService Returned when the server has lost its internal connection to the control.

BadInternalError An error occurred during execution of an internal request while searching the tool
number.

BadUnexpectedError Some other error occurred.

HEIDENHAIN | OPC UA Information Model | 10/2023 98

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess GetToolData
Read all type-specific data of the tool.
The method provides all tool data items that are associated with the type of the tool as a list of 0:KeyValuePairs. The
keys are equal to the BrowseNames of ToolDataItems at the ToolDataRepresentation component.
For a list of data item identifiers, see also "Annex A: Tool Data Reference".
Table 100: GetToolData Attributes

Attribute Value

BrowseName GetToolData

Signature
 GetToolData{
 [in] UInt32 ToolNumber,
 [in] Byte ToolIndex,
 [out] KeyValuePair[] ToolData
 };

Table 101: GetToolData Signature

Argument Description

ToolNumber The number of the tool

ToolIndex The index of the tool in case of an indexed tool; if omitted, the record with index 0 is
chosen.

ToolData Array of ToolDataItem QualifiedNames and their corresponding values in the request-
ed record

Along with the InputArguments and OutputArguments properties, the GetToolData method has the references listed in
Table 102.
Table 102: GetToolData Additional References

ReferenceType IsForward Target Path

HasArgumentDescription True ToolDataAccess ArgumentDescriptions ToolNumber

HasOptionalInputArgumentDescription True ToolDataAccess ArgumentDescriptions ToolIndex

Table 103: GetToolData Result Codes

Result Code Description

BadInvalidState The control is not active and fully initialized and access to tool data is not possible at
the moment. Tool data access is possible during Machine State NCIsAvailable.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.

BadNoEntryExists There is no tool data record with the given ToolNumber and ToolIndex.

BadNotSupported The server does not support this functionality for this tool type (e.g., because the type
of the tool is unknown, deprecated or not well-defined).

BadDeviceFailure An inconsistent tool data record prevents the execution.

BadOutOfService Returned when the server has lost its internal connection to the control.

BadInternalError An error occurred during execution of an internal request while reading the tool data.

BadUnexpectedError Some other error occurred.

HEIDENHAIN | OPC UA Information Model | 10/2023 99

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess GetToolDataByCategory
Returns the tool's data that belongs to the given data category.
Compared to the similar GetToolData method, GetToolDataByCategory provides only the data that belongs to the
given DataCategory. The available data categories are listed at the ToolDataRepresentation component. The method
returns only data items that are associated with the type of the tool.
Table 104: GetToolDataByCategory Attributes

Attribute Value

BrowseName GetToolDataByCategory

Signature
 GetToolDataByCategory{
 [in] QualifiedName DataCategory,
 [in] UInt32 ToolNumber,
 [in] Byte ToolIndex,
 [out] KeyValuePair[] ToolData
 };

Table 105: GetToolDataByCategory Signature

Argument Description

DataCategory Filter for this data category
The BrowseName of a 4.18 "ToolDataCategoryType" instance at ToolDataRepresenta-
tion component.

ToolNumber The number of the tool

ToolIndex The index of the tool in case of an indexed tool; if omitted, the record with index 0 is
chosen.

ToolData The resulting set of tool data

Along with the InputArguments and OutputArguments properties, the GetToolDataByCategory method has the
references listed in Table 106.
Table 106: GetToolDataByCategory Additional References

ReferenceType IsForward Target Path

HasArgumentDescription True ToolDataAccess ArgumentDescriptions ToolNumber

HasOptionalInputArgumentDescription True ToolDataAccess ArgumentDescriptions ToolIndex

Table 107: GetToolDataByCategory Result Codes

Result Code Description

BadInvalidState The control is not active and fully initialized and access to tool data is not possible at
the moment. Tool data access is possible during Machine State NCIsAvailable.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.

BadNotFound There are no data items in the specified DataCategory and tool type.

BadNotSupported The server does not support this functionality for the tool type (e.g., because the type
of the tool is unknown, deprecated or not well-defined).

BadDeviceFailure An inconsistent tool data record prevents the execution.

BadOutOfService Returned when the server has lost its internal connection to the control.

BadInternalError An error occurred during execution of an internal request while reading the tool data.

BadUnexpectedError Some other error occurred.

HEIDENHAIN | OPC UA Information Model | 10/2023 100

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess GetToolDataItems
Read a list of tool data item values.
The GetToolDataItems method returns the values of a specified list of tool data items.
Compared to the GetToolData method, GetToolDataItems is not restricted to the data items that are associated with
the tool type. If a data value exists in the internal tables for the requested data item and record, it is provided.
For a list of data item identifiers, see also "Annex A: Tool Data Reference".
Table 108: GetToolDataItems Attributes

Attribute Value

BrowseName GetToolDataItems

Signature
 GetToolDataItems{
 [in] QualifiedName[] DataItems,
 [in] UInt32 ToolNumber,
 [in] Byte ToolIndex,
 [out] StatusCode[] Status,
 [out] KeyValuePair[] ToolData
 };

Table 109: GetToolDataItems Signature

Argument Description

DataItems Retrieve these data items for the requested tool record if they exist

ToolNumber The number of the tool

ToolIndex The index of the tool in case of an indexed tool; if omitted, the record with index 0 is
chosen.

Status Retrieval result per requested data item in the same order as the DataItems argument
contents. The argument provides additional information in case of an Uncertain
method status code.

Good: The value is provided
GoodNoData: The value is provided but empty (Null)
BadNotFound: There is no data item with that identifier
BadNoEntryExists: The data item identifier is valid. But there is no value in the
internal tables because it belongs to other tool types only.
BadConfigurationError: The record is internally not well-defined (e.g., a touch probe
data record is incomplete). The link to the requested additional touch probe data
item is missing.

ToolData The resulting values for successfully requested data items.
DataItems with a bad status code in Status are not provided.

Along with to the InputArguments and OutputArguments properties, the GetToolDataItems method has the references
listed in Table 110.
Table 110: GetToolDataItems Additional References

ReferenceType IsForward Target Path

HasArgumentDescription True ToolDataAccess ArgumentDescriptions ToolNumber

HasOptionalInputArgumentDescription True ToolDataAccess ArgumentDescriptions ToolIndex

HEIDENHAIN | OPC UA Information Model | 10/2023 101

OPC UA ObjectTypes | ToolDataManagementType

Table 111: GetToolDataItems Result Codes

Result Code Description

BadInvalidState The control is not active and fully initialized and access to tool data is not possible at
the moment. Tool data access is possible during Machine State NCIsAvailable.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.

BadDeviceFailure The internal data record is inconsistent (e.g., for tool that needs records in two inter-
nal tables and the second record is missing).

BadOutOfService Returned when the server has lost its internal connection to the control.

BadInternalError An error occurred during execution of an internal request to access the data of the
tool.

BadUnexpectedError Some other error occurred.

Uncertain Not all of the requested DataItems could be read successfully. See Status output
argument for more information.

HEIDENHAIN | OPC UA Information Model | 10/2023 102

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess GetToolIndices
Get all index numbers belonging to the tool with the given tool number.
The method is intended for use with indexed tools.
Table 112: GetToolIndices Attributes

Attribute Value

BrowseName GetToolIndices

Signature
 GetToolIndices{
 [in] UInt32 ToolNumber,
 [out] Byte[] ToolIndices
 };

Table 113: GetToolIndices Signature

Argument Description

ToolNumber The number of the tool

ToolIndices List of all known indices for the requested tool

Along with to the InputArguments and OutputArguments properties, the GetToolIndices method has the references
listed in Table 114.
Table 114: GetToolIndices Additional References

ReferenceType IsForward Target Path

HasArgumentDescription True ToolDataAccess ArgumentDescriptions ToolNumber

Table 115: GetToolIndices Result Codes

Result Code Description

BadInvalidState The control is not active and fully initialized and access to tool data is not possible at
the moment. Tool data access is possible during Machine State NCIsAvailable.

BadInvalidArgument The input argument was invalid; more information is given at the inputArgumentRe-
sults.

BadNoEntryExists There is no tool record with the given tool number.

BadOutOfService Returned when the server has lost its internal connection to the control.

BadInternalError An error occurred during execution of an internal request while searching for the tool
records.

BadUnexpectedError Some other error occurred.

HEIDENHAIN | OPC UA Information Model | 10/2023 103

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess GetToolNumber
Get the machine-specific tool number of a tool selected by the database ID and all index numbers of the records.
The method is intended for use with unique tool identifiers of a central tool management system (database ID).
If the database ID of a tool is set at the main tool record (index 0) as recommended by HEIDENHAIN, the method
GetToolNumber returns the machine-specific tool number and all indices. The record identifiers can be used to
access the tool's data.
If the database ID is set at a specific additional index, the method provides the tool number and the dedicated index.
See also "Terms", Page 24.
Table 116: GetToolNumber Attributes

Attribute Value

BrowseName GetToolNumber

Signature
 GetToolNumber{
 [in] String ToolDatabaseId,
 [out] UInt32 ToolNumber,
 [out] Byte[] ToolIndices
 };

Table 117: GetToolNumber Signature

Argument Description

ToolDatabaseId The identifier from the central tool management system

ToolNumber The number of the tool with the given database identifier

ToolIndices All indices for the tool with the given database identifier

Table 118: GetToolNumber Result Codes

Result Code Description

BadInvalidState The control is not active and fully initialized and access to tool data is not possible at
the moment. Tool data access is possible during Machine State NCIsAvailable.

BadInvalidArgument The input argument was invalid; more information is given at the inputArgumentRe-
sults.

BadNoEntryExists No tool record was found for the given database ID.

BadOutOfService Returned when the server has lost its internal connection to the control.

BadInternalError An error occurred during execution of an internal request while searching for the tool
records.

BadUnexpectedError Some other error occurred.

HEIDENHAIN | OPC UA Information Model | 10/2023 104

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess GetToolType
Returns the type of the given tool from the tool record.
The ToolType is provided as QualifiedName equal to the BrowseName of the 4.21 "ToolTypeDescriptionType"
instance of the tool type at the ToolDataRepresentation.
For a list of tool type identifiers, see also "Annex A: Tool Data Reference".
Table 119: GetToolType Attributes

Attribute Value

BrowseName GetToolType

Signature
 GetToolType{
 [in] UInt32 ToolNumber,
 [in] Byte ToolIndex,
 [out] QualifiedName ToolType
 };

Table 120: GetToolType Signature

Argument Description

ToolNumber The number to identify the tool record

ToolIndex The index to identify the tool record; if omitted, the record with index 0 is chosen.

ToolType The BrowseName of the requested tool's ToolTypeDescription

Along with to the InputArguments and OutputArguments properties, the GetToolType method has the references
listed in Table 121.
Table 121: GetToolType Additional References

ReferenceType IsForward Target Path

HasArgumentDescription True ToolDataAccess ArgumentDescriptions ToolNumber

HasOptionalInputArgumentDescription True ToolDataAccess ArgumentDescriptions ToolIndex

Table 122: GetToolType Result Codes

Result Code Description

BadInvalidState The control is not active and fully initialized and access to tool data is not possible at
the moment. Tool data access is possible during Machine State NCIsAvailable.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.

BadNoEntryExists A tool record with the given number and index does not exist.

BadNotSupported The type of the tool is not known (e.g., because it is deprecated, not supported by the
control model, or not well defined, for example, the internal subtype information is
missing).

BadOutOfService Returned when the server has lost its internal connection to the control.

BadInternalError An error occurred during execution of an internal request to get the tool type.

BadUnexpectedError Some other error occurred.

HEIDENHAIN | OPC UA Information Model | 10/2023 105

OPC UA ObjectTypes | ToolDataManagementType

ToolDataAccess UpdateToolDataItems
Update the data of a tool record.
The specified data items are updated with the new values; other data items remain unchanged.
The method returns a Good StatusCode if all update operations have been executed successfully. If some of the new
values cannot be written (e.g., because a value was invalid or the record has been locked for editing by the operator),
none of the data items are updated.
The new data is validated at the server before the update operations are executed. If some of the data items are
not known, the new value is invalid (e.g., out of range of this data item or does not match the data type), the method
returns an Uncertain StatusCode. In this case the output argument ValidationResult contains the result of the
validation using a specific StatusCode per data item to be updated.
The ToolNumber, ToolIndex, or Type of a tool cannot be changed using UpdateToolDataItems.
For a list of data item identifiers, see also "Annex A: Tool Data Reference".
Table 123: UpdateToolDataItems Attributes

Attribute Value

BrowseName UpdateToolDataItems

Signature
 UpdateToolDataItems{
 [in] KeyValuePair[] ToolData,
 [in] UInt32 ToolNumber,
 [in] Byte ToolIndex,
 [out] StatusCode[] ValidationResult
 };

Table 124: UpdateToolDataItems Signature

Argument Description

ToolData The ToolDataItem names and values to be set. Value type must match and the data
item must exist for the tool type

ToolNumber The number to identify the tool record to be updated

ToolIndex The index to identify the tool record to be updated; if omitted, the record with index 0
is updated.

ValidationResult Information per data item in case of failure
For each KeyValuePair given in ToolData, a validation result is provided using one of
the following StatusCodes:

Good: this element is not the reason of an error
BadOutOfRange: the new value is out of the value range of this data item
BadTypeMismatch: the Value's DataType does not match the data type of the data
item
BadNotWritable: the data item is not writable in general (e.g., the tool number or
the type of the tool)
BadNotFound: the data item is not known
BadNoEntryExists: the data item does not exist for tools of this type
BadInvalidArgument: the new value is invalid (e.g., does not match the required
string pattern)
BadEntryExists: the value of the data item has to be unique across all records (e.g.,
the database ID of a tool), but the value already exists at another record
BadConfigurationError: The record is internally not well-defined (e.g., a touch probe
data record is incomplete). The link to the requested additional touch probe data
item is missing.

HEIDENHAIN | OPC UA Information Model | 10/2023 106

OPC UA ObjectTypes | ToolDataManagementType

Argument Description
BadUnexpectedError: something else was not correct (some other error occurred)
Uncertain: the value of this data item or a combination of this and other data item
values might not be valid

Along with the InputArguments and OutputArguments properties, the UpdateToolDataItems method has the
references listed in Table 125.
Table 125: UpdateToolDataItems Additional References

ReferenceType IsForward Target Path

HasArgumentDescription True ToolDataAccess ArgumentDescriptions ToolNumber

HasOptionalInputArgumentDescription True ToolDataAccess ArgumentDescriptions ToolIndex

Table 126: UpdateToolDataItems Result Codes

Result Code Description

BadInvalidState The tool data cannot be updated at the moment. Possible reasons are:
The control is not active and fully initialized. Tool data access is possible during
Machine State NCIsAvailable.
The tool record is locked for editing by the operator at the machine or another
external system.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.

BadReferenceNotAllowed One of the data items to write has referencing semantics, and the value to write is
invalid (e.g., the new replacement tool value would refer to a non-existing tool record).

BadOutOfService Returned when the server has lost its internal connection to the control.

BadDeviceFailure The method could not be executed due to an inconsistency of the tool record at the
control.

BadUserAccessDenied Returned when the client user has insufficient rights on the control. (E.g. the NC.Edit-
ToolTable right is needed to edit tool data.)

BadInternalError An error occurred during execution of an internal request to update the tool data.

BadUnexpectedError Some other error occurred.

Uncertain The method could not be executed successfully due to invalid data items and/or
values to update. No tool data has been updated.
Additional information for each data item and value is provided by the output
argument ValidationResult.

HEIDENHAIN | OPC UA Information Model | 10/2023 107

OPC UA ObjectTypes | ToolDataManagementType

ToolDataRepresentation
The ToolDataRepresentation component of type 4.17 "ToolDataRepresentationType" provides information about the
machine's tool data definition and available tool types.
The BrowseName of listed tool types can be used at the CreateNewToolRecord or CreateNewToolRecordWithId
methods to create a tool record for a tool of this type. The GetToolType method returns the BrowseName of the tool
type instance for an existing tool record.
The BrowseName of a tool data category can be used at the GetToolDataByCategory method to read all data of a tool
record that belongs to the given category and tool type.
The ToolDataItems component of ToolDataRepresentation describes all tool data items of the machine. The
BrowseNames of the instances are used as Keys of the KeyValuePair arguments at various ToolDataAccess methods.
Examples are the ToolData arguments of the GetToolData and UpdateToolData methods.
For a list of data item identifiers and tool types, see "Annex A: Tool Data Reference".
More details are given at the 4.17 "ToolDataRepresentationType" and 4.19 "ToolDataItemType" .

Validation
Validation provides functionality to check tool-related data (e.g., to validate 3D model files for tools).
See 3D Model Files for Tools in 3.10 "Tool Data Management" for an overview including an example.

Validation 3DModels
The availability and use of 3D models of tools and tool carriers for collision monitoring during program run and
material removal simulation depend on the software option Dynamic Collision Monitoring (DCM) or DCM version 2.
The functionality of Validation 3DModels does not depend on the software option for DCM.
The 3DModels component of Validation provides information about tool data items that denote 3D models and a
method to check 3D model files for tool data.
3D models for tools or tool carriers need to fulfill requirements of the NC software (e.g., the model should have a
closed shell or the file needs to be stored at a specific location). Otherwise the model cannot be used by the control.
Validation of 3D model files before use at the machine during production processes can help to prevent interruptions
(e.g., to avoid errors at TOOL CALLs).
Note that not all requirements for 3D model files for tools and tool carriers can be checked by the
Validate3DModelFile method. The NC software (and the method) cannot determine the correct origin of the
coordinate system and its orientation as it depends on the characteristics of the concrete tool.
Overview of 3D model file validation aspects for tool data items:

Correct location of the files, see FileLocation and FileLocationManufacturer of 4.19 "ToolDataItemType"
Compatible file name (e.g., maximum length and no special characters), see ValueDescription of 4.19
"ToolDataItemType"
Supported 3D model file format per tool data item (e.g., M3D or STL files)
Readability and completeness of the files (if it is a combined model)
Size and complexity of the 3D model (e.g., maximum number of triangles for STL files)
Quality of the 3D model (e.g., a closed shell ("watertight" mesh))

For more information about 3D models for tools and tool carriers, see Setup, Testing and Running NC Programs
User’s Manual or Setup and Program Run User’s Manual of the respective control model.
The ReleatedToolDataItems folder Organizes ToolDataItems that denote 3D model files. Depending on the control
model the list of RelatedToolDataItems can differ.
ArgumentDescriptions groups the variables for additional method argument descriptions, see Validation 3DModels
Validate3DModelFile.
The components of 3DModels (ReleatedToolDataItems and the method argument description variable values) are
initialized when the Machine reaches the State NCIsAvailable.

HEIDENHAIN | OPC UA Information Model | 10/2023 108

OPC UA ObjectTypes | ToolDataManagementType

Validation 3DModels Validate3DModelFile
Validate3DModelFile checks a given 3D model file at the FileSystem of the machine for whether it can be used for the
designated use case (e.g., as 3D model for a tool carrier or a tool).
See "Validation 3DModels" for more information about the requirements of the control for 3D models and 3D Model
Files for Tools in 3.10 "Tool Data Management" for an overview.
If the 3D model file passes the validation, the method returns Good.
If at least one issue has been found, the method returns Uncertain. In this case, the output argument Issues contains
the corresponding number codes. The method Validate3DModelFile HasArgumentDescription variable Issues. Issues
is a variable of type MultiStateValueDiscreteType. With its properties the variable provides more information about
each possible number code. The EnumValues property at the instance of ToolDataManagementType in the address
space of the OPC UA NC Server contains the name and a description of each possible validation issue.
For a list of possible issues of NC software version 18, see 3D Model Files for Tools: Validation Issues List in Annex A:
Tool Data Reference.
Table 127: Validate3DModelFile Attributes

Attribute Value

BrowseName Validate3DModelFile

Signature
 Validate3DModelFile{
 [in] QualifiedName DataItem,
 [in] NodeId File,
 [out] UInt32[] Issues
 };

Table 128: Validate3DModelFile Signature

Argument Description

DataItem Identifier of a ToolDataItemType instance; the file is validated for the use cases
associated with this data item.
The Selections property of the corresponding argument description variable contains
the possible values.

File NodeId of the 3D model file to validate

Issues List of issues found during validation of the 3D model file. The EnumValues property
of the argument description variable at the instance of the method provides informa-
tion about the issues.
If the 3D model file passes the validation, the list is empty.
See 3D Model Files for Tools: Validation Issues List in Annex A: Tool Data Reference
for possible issues.

Along with the InputArguments and OutputArguments properties, the Validate3DModelFile method has the references
listed in Table 129.
Table 129: Validate3DModelFile Additional References

ReferenceType IsForward Target Path

HasArgumentDescription True Validation 3DModels ArgumentDescriptions
DataItem

HasArgumentDescription True Validation 3DModels ArgumentDescriptions Issues

Table 130: Validate3DModelFile Result Codes

Result Code Description

BadInvalidState The validation cannot be executed at the moment.
The control is not active and fully initialized. Validation of 3D model files for tool data
is possible during Machine State NCIsAvailable.

HEIDENHAIN | OPC UA Information Model | 10/2023 109

OPC UA ObjectTypes | ToolDataManagementType

Result Code Description

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.
Result codes of input arguments at inputArgumentResults (except Good):
DataItem

BadInvalidArgument: the given value is not one of the supported tool data items,
meaning that it is not one of the entries listed at the Selections property

File
BadUserAccessDenied: the user does not have access rights to the file denoted by
the given NodeId
BadNodeIdUnknown: the given NodeId is not known
BadNoMatch: the node with this NodeId is not of type FileType
BadNotFound: there is no node for the Null-NodeId

BadOutOfService Returned when the server has lost its internal connection to the control; validation is
not possible.

Uncertain The 3D model file did not pass the validation.
At least one issue has been detected. The found issues are listed in the Issues
OutputArgument.

HEIDENHAIN | OPC UA Information Model | 10/2023 110

OPC UA ObjectTypes | ToolDataRepresentationType

4.17 ToolDataRepresentationType
Overview
A ToolDataRepresentationType instance describes the tool data definition, lists the tool types, and connects the
different tool types with their related data items.
It is used at the 4.16 "ToolDataManagementType" to describe the machine-specific tool data and available tool types.
An AssociatedWith reference connects the concrete 4.21 "ToolTypeDescriptionType" instances with their related data
items of type 4.19 "ToolDataItemType". The tool data items and tool types are grouped into categories.

Attributes
Table 131: ToolDataRepresentationType Definition Attributes

Attribute Value

BrowseName ToolDataRepresentationType

IsAbstract false

References
ToolDataRepresentationType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that
Node.
Table 132: ToolDataRepresentationType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object ToolDataCategories BaseObjectType Mandatory

HasComponent Object ToolDataItems BaseObjectType Mandatory

HasComponent Object ToolTypeCategories BaseObjectType Mandatory

HasComponent Object ToolTypes BaseObjectType Mandatory

HEIDENHAIN | OPC UA Information Model | 10/2023 111

OPC UA ObjectTypes | ToolDataRepresentationType

Additional Subcomponents
Some components of ToolDataRepresentationType have additional components, which are defined in Table 133.
Table 133: ToolDataRepresentationType Additional Subcomponents

Source Path ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

ToolData-
Categories

HasComponent Object Correction ToolTypeCatego-
ryType

Optional

ToolData-
Categories

HasComponent Object Geometry ToolTypeCatego-
ryType

Optional

ToolData-
Categories

HasComponent Object Identification ToolTypeCatego-
ryType

Optional

ToolData-
Categories

HasComponent Object Manufacturer ToolTypeCatego-
ryType

Optional

ToolData-
Categories

HasComponent Object Manufacturer-
Extension

ToolTypeCatego-
ryType

Optional

ToolData-
Categories

HasComponent Object Technology ToolTypeCatego-
ryType

Optional

ToolData-
Categories

HasComponent Object ToolLife ToolTypeCatego-
ryType

Optional

ToolData-
Categories

HasComponent Object ToolWear ToolTypeCatego-
ryType

Optional

ToolData-
Categories

HasComponent Object Touchprobe ToolTypeCatego-
ryType

Optional

ToolData-
Items

HasComponent Object <ToolDataItem> ToolDataItem-
Type

OptionalPlace-
holder

ToolType-
Categories

HasComponent Object DressingTools ToolTypeCatego-
ryType

Optional

ToolType-
Categories

HasComponent Object DrillingTools ToolTypeCatego-
ryType

Optional

ToolType-
Categories

HasComponent Object GrindingTools ToolTypeCatego-
ryType

Optional

ToolType-
Categories

HasComponent Object MillingTools ToolTypeCatego-
ryType

Optional

ToolType-
Categories

HasComponent Object Touchprobes ToolTypeCatego-
ryType

Optional

ToolType-
Categories

HasComponent Object TurningTools ToolTypeCatego-
ryType

Optional

ToolTypes HasComponent Object <ToolType-
Description>

ToolType-
DescriptionType

OptionalPlace-
holder

Additional References
Some components of ToolDataRepresentationType have additional references, which are defined in Table 134.
Table 134: ToolDataRepresentationType Additional References

Source Path ReferenceType IsForward Target Path

ToolDataItems <ToolDataItem> AssociatedWith True ToolTypes <ToolTypeDescription>

HEIDENHAIN | OPC UA Information Model | 10/2023 112

OPC UA ObjectTypes | ToolDataRepresentationType

ToolDataCategories
ToolDataCategories provides a predefined list of 4.18 "ToolDataCategoryType" instances to group the 4.19
"ToolDataItemType" instances listed below ToolDataItems by area of application.
The ManufacturerExtension category references all machine-specific tool data items defined by the machine
manufacturer. It is only instantiated in a server if the machine manufacturer has defined additional tool data items.

ToolDataItems
The ToolDataItems component lists all tool data items of the machine using the 4.19 "ToolDataItemType". The
available tool data items may change between different machines, control models, and software versions.
Each ToolDataItem provides the description of a data item, the default value, and metadata like the value ranges,
engineering units or the maximum string length.
Along with the data items defined by HEIDENHAIN, the additional machine-specific tool data items of the machine
manufacturer are listed. For data items defined by HEIDENHAIN and more information about machine-specific tool
data extension of the machine manufacturer, see "Annex A: Tool Data Reference".
Note that for some of the data items defined by HEIDENHAIN, the machine manufacturer can edit the definition, for
example, change the default value or extend the maximum string length.
Each ToolDataItem is AssociatedWith one or more ToolTypes; see the following ToolTypes component description for
more information.

ToolTypeCategories
The ToolTypeCategories component groups the tool types based on the manufacturing process using instances of
type 4.20 "ToolTypeCategoryType". The server instantiates only the ToolTypeCategories that are supported by the
machine or control.

ToolTypes
The ToolTypes component lists all tool types available at the specific machine or control using the 4.21 "ToolType-
DescriptionType". The available tool types may change between different control models and software versions. (
"Annex A: Tool Data Reference" lists the tool types with their unique string identifiers.)
Each ToolType refers to the ToolDataItems that belong to it using AssociatedWith references. A tool type is linked for
instance with the data items for its geometrical characteristics, life time, and additional technology information and
settings that might be used during machining cycles.
The assignment of tool types and data items can change (e.g., if a new control software version makes a technology
or machining cycle available for more tool types). The relation is provided by the instances at the server.
Additional tool data items of the machine manufacturer:
With NC software version 17, all machine-specific tool data items of the machine manufacturer are taken as
potentially relevant for all tool types. The references depend only on the internal data source table. There is no
special handling or restriction of the AssociatedWith references between the ToolTypes and the ToolDataItems of the
ManufacturerExtension category.

HEIDENHAIN | OPC UA Information Model | 10/2023 113

OPC UA ObjectTypes | ToolDataCategoryType

4.18 ToolDataCategoryType
Overview
A ToolDataCategoryType instance is used to group 4.19 "ToolDataItemType" instances of one tool data category.
It is used, for example, at the 4.17 "ToolDataRepresentationType" instance at 4.16 "ToolDataManagementType": The
BrowseNames of ToolDataCategory instances can be used as argument at the GetToolDataByCategory method to
access tool data.

Attributes
Table 135: ToolDataCategoryType Definition Attributes

Attribute Value

BrowseName ToolDataCategoryType

IsAbstract false

References
ToolDataCategoryType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 136: ToolDataCategoryType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object <ToolDataItem> ToolDataItemType OptionalPlacehold-
er

<ToolDataItem>
Placeholder for 4.19 "ToolDataItemType" instances of this data category.

HEIDENHAIN | OPC UA Information Model | 10/2023 114

OPC UA ObjectTypes | ToolDataItemType

4.19 ToolDataItemType
Overview
A ToolDataItemType instance describes one tool data item with its data type, default value and metadata like value
ranges, engineering units or enumeration values.
Instances of ToolDataItemType are used at the 4.17 "ToolDataRepresentationType" to describe the tool data of a
machine.
See Table 215 in "Annex A: Tool Data Reference" for a list of tool data items defined by HEIDENHAIN.

Attributes
Table 137: ToolDataItemType Definition Attributes

Attribute Value

BrowseName ToolDataItemType

IsAbstract false

References
ToolDataItemType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 138: ToolDataItemType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable JsonIdentifier String PropertyType Mandatory

HasComponent Variable ValueDescription BaseDataType BaseDataVariable-
Type

Mandatory

HasComponent Variable FileLocation String BaseDataVariable-
Type

Optional

HasComponent Variable FileLocationManu-
facturer

String BaseDataVariable-
Type

Optional

Additional Subcomponents
Some components of the ToolDataItemType have additional components, which are defined in Table 139.
Table 139: ToolDataItemType Additional Subcomponents

Source Path ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

FileLocation HasProperty Variable NodeId NodeId PropertyType Mandatory

FileLocation-
Manufactur-
er

HasProperty Variable NodeId NodeId PropertyType Mandatory

JsonIdentifier
The identifier of this data item used at the JSON tool data file and schema.
See 3.10 "Tool Data Management" and 4.22 "LocalToolDataSetType".

HEIDENHAIN | OPC UA Information Model | 10/2023 115

OPC UA ObjectTypes | ToolDataItemType

ValueDescription
The ValueDescription variable provides the data type, default value and additional metadata using OPC UA standard
VariableTypes with their defined properties. Possible VariableTypes with their Properties are given in Table 140. This
list might be extended in future versions.
The data type and default value of a concrete data item are given at the variable's DataType and Value attributes. (It is
possible that the default value is empty or Null.)
Table 140: ValueDescription VariableTypes with DataTypes and Properties used at instances

VariableType DataType Possible Properties

SelectionListType String Selections
RestrictToList

String MaxStringLength

UtcTime

ToolRecordIdentifierDataType

BaseDataVariableType

Boolean

TwoStateDiscreteType Boolean FalseState
TrueState

UInt32MultiStateValueDiscreteType

Int32

EnumValues
ValueAsText

Byte InstrumentRange

UInt32

Int32

InstrumentRange
EngineeringUnits

BaseAnalogType

Double InstrumentRange
ValuePrecision
EngineeringUnits

FileLocation
Some tool data item values are names of files (e.g., the name of a 3D model file of the tool carrier). These files are
stored in a specific directory in the file system of the machine. The optional FileLocation component is used at tool
data items that denote files. The value is the path of the directory.
The property NodeId contains the corresponding NodeId of the FileDirectory in the FileSystem of the machine. See 9
"Machine File System Access".

FileLocationManufacturer
Similar to FileLocation , the FileLocationManufacturer provides a secondary location for tool data files. Usually only
machine manufacturers have access to this location.
If FileLocation and FileLocationManufacturer both contain a file with the name from the tool record, the machine uses
the file at FileLocation.

HEIDENHAIN | OPC UA Information Model | 10/2023 116

OPC UA ObjectTypes | ToolTypeCategoryType

4.20 ToolTypeCategoryType
Overview
A ToolTypeCategoryType instance is used to group 4.21 "ToolTypeDescriptionType" instances of one category.
It is used, for example, at the 4.17 "ToolDataRepresentationType".

Attributes
Table 141: ToolTypeCategoryType Definition Attributes

Attribute Value

BrowseName ToolTypeCategoryType

IsAbstract false

References
ToolTypeCategoryType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that
Node.
Table 142: ToolTypeCategoryType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object <ToolTypeDescrip-
tion>

ToolType-
DescriptionType

OptionalPlacehold-
er

<ToolTypeDescription>
Placeholder for 4.21 "ToolTypeDescriptionType" instances of this category.

HEIDENHAIN | OPC UA Information Model | 10/2023 117

OPC UA ObjectTypes | ToolTypeDescriptionType

4.21 ToolTypeDescriptionType
Overview
A ToolTypeDescriptionType instance represents a tool type.
It is used, for example, at the 4.17 "ToolDataRepresentationType" instance at 4.16 "ToolDataManagementType".
See Table 216 in "Annex A: Tool Data Reference" for a list of tool types.

Attributes
Table 143: ToolTypeDescriptionType Definition Attributes

Attribute Value

BrowseName ToolTypeDescriptionType

IsAbstract false

References
ToolTypeDescriptionTypeis a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that
Node.
Table 144: ToolTypeDescriptionType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable Identifier String PropertyType Mandatory

HasProperty Variable Name Localized-
Text

PropertyType Mandatory

Identifier
The unique string identifier of the tool type.

Name
The name of the tool type.

HEIDENHAIN | OPC UA Information Model | 10/2023 118

OPC UA ObjectTypes | LocalToolDataSetType

4.22 LocalToolDataSetType
Overview
A LocalToolDataSetType instance provides the functionality to initialize a local copy of the machine's tool data and
keep it up to date using update events. For example, the tool database of a central tool management system can also
be synchronized with the machine's tool data.
The LocalToolDataSet functionality consists of a method to create and download a JSON file containing the
machine's current tool data, the corresponding JSON schema, and events containing change information of the tool
records. The availability and status of the functionality is provided by an extra variable.
See also Synchronizing a Local Tool Data Set with the Machine in 3.10 "Tool Data Management" for an example
sequence.
For data items defined by HEIDENHAIN and more information about machine-specific tool data extension of the
machine manufacturer, see "Annex A: Tool Data Reference".

Attributes
Table 145: LocalToolDataSetType Definition Attributes

Attribute Value

BrowseName LocalToolDataSetType

IsAbstract false

References
LocalToolDataSetType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that Node.
Table 146: LocalToolDataSetType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

GeneratesEvent EventType ToolDataSetModificationEventType defined in 5.7

HasComponent Variable Synchronization-
Status

ToolData-
Synchro-
nization-
StatusType

BaseDataVariable-
Type

Mandatory

HasComponent Method CreateToolDataFile Mandatory

HasComponent Object ToolDataSchema FileType Mandatory

SynchronizationStatus
The SynchronizationStatus variable provides information about the availability and status of the LocalDataSet
functionality using the 7.6 "ToolDataSynchronizationStatusType".
If the server does not have a connection to the control or until the NC software is fully initialized after start-up of the
machine, the status is NotAvailable. While the status is NotAvailable, calling the CreateToolDataFile method is not
successful and no update events are emitted.
During the status Idle the server is ready to provide the LocalDataSet functionality. The method CreateToolDataFile
can be used from now on.
To reduce load at the machine, the update events are only generated if at least one client is interested in the events
of type 5.7 "ToolDataSetModificationEventType". A client shows its interest in the update events by subscribing to
events of type 5.7 "ToolDataSetModificationEventType". As soon as at least one client subscribes to the events, the
value of the variable changes from Idle to Initializing. The server initializes access to the data and starts sending the
update events at tool data changes.
While the value is Synchronized, the events of type 5.7 "ToolDataSetModificationEventType" are emitted. The server
keeps this status until the last client is no longer interested in the update events or the NC software or the machine is
being shut down.

HEIDENHAIN | OPC UA Information Model | 10/2023 119

OPC UA ObjectTypes | LocalToolDataSetType

CreateToolDataFile
Triggers the creation of a JSON file containing the current tool data of the machine.
The ResultFile argument contains the NodeId of the created file. The NodeId belongs to a 0:FileType instance at the
Machine's FileSystem. The JSON file can be downloaded using the methods of the File object. (To save memory
resources at the machine, a client application should delete the File after downloading it.) See 9 "Machine File System
Access".
The file contains a version number. The version number corresponds to the version of the update
event contents provided in the Version property of the 7.9 "ToolRecordModificationDataType" (see 5.7
"ToolDataSetModificationEventType"). The version numbers are not synchronized over OPC UA server life cycles.
Table 147: CreateToolDataFile Attributes

Attribute Value

BrowseName CreateToolDataFile

Signature
 CreateToolDataFile{
 [out] NodeId ResultFile
 };

Table 148: CreateToolDataFile Signature

Argument Description

ResultFile NodeId of the created file

Table 149: CreateToolDataFile Result Codes

Result Code Description

BadInvalidState The server cannot provide the functionality at the moment (e.g., because the control
is not fully initialized). The creation of the file is possible during Machine State
NCIsAvailable.

BadOutOfMemory Too many files have been created and are still present in the machine's memory.
(A client application should delete the created file after downloading it.)

BadOutOfService Returned when the server has lost its internal connection to the control.

BadTimeout The server's internal request to create the file timed out. The creation of the file took
too long.

BadNoMatch The server was not able to determine the NodeId of the created file.

BadInternalError Some other internal error occurred.

ToolDataSchema
The ToolDataSchema component is an instance of 0:FileType. The schema file contains the JSON schema describing
the tool data export JSON file.
The schema file is created based on the current configuration of the machine. It also contains the machine-specific
changes and extensions of the machine manufacturer.
The ID of the schema contains a check value. If tool data relevant configuration items change, the check value
indicates it.

HEIDENHAIN | OPC UA Information Model | 10/2023 120

OPC UA ObjectTypes | ServiceFileInterfaceType

4.23 ServiceFileInterfaceType
Overview
A ServiceFileInterfaceType instance provides methods to create service files and the corresponding file system
download information.
A service file contains information about the current machine and operation status. Machine manufacturers or
HEIDENHAIN technical support can use service files to analyze issues of the machine.

A service file contains current NC data (e.g., selected NC programs < 10 MB, tool data, and other
information).
By relaying a service file, you declare you consent to your machine manufacturer or DR. JOHANNES
HEIDENHAIN GmbH using this data for diagnostic purposes.
If you do not consent to this, then please first edit the service file. Remove all confidential data before
relaying the file. Take into consideration that this might complicate the error analysis.

To save memory at the machine, client applications are recommended to delete no longer required service files
using the FileSystem methods of the Machine (for example, after downloading the files). See 9 "Machine File System
Access".
If there are too many files with similar names at the same location, the control deletes older service files
automatically.

Attributes
Table 150: ServiceFileInterfaceType Definition Attributes

Attribute Value

BrowseName ServiceFileInterfaceType

IsAbstract false

References
ServiceFileInterfaceType is a subtype of BaseObjectType, which means it inherits the InstanceDeclarations of that
Node.
Table 151: ServiceFileInterfaceType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Object ArgumentDescrip-
tions

BaseObjectType Optional

HasComponent Method CreateServiceFile Mandatory

HasComponent Method CreateServiceFile-
ByNodeId

Mandatory

HasComponent Variable LastCreatedService-
File

String BaseDataVariable-
Type

Mandatory

HEIDENHAIN | OPC UA Information Model | 10/2023 121

OPC UA ObjectTypes | ServiceFileInterfaceType

Additional Subcomponents
Some components of the ServiceFileInterfaceType have additional components, which are defined in Table 152.
Table 152: ServiceFileInterfaceType Additional Subcomponents

Source Path ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

LastCreated-
ServiceFile

HasProperty Variable FileNodeId NodeId PropertyType Mandatory

Argument-
Descriptions

HasComponent Variable FileName-
Prefix

String BaseDataVariable-
Type

Optional

Argument-
Descriptions

HasComponent Variable Location NodeId BaseDataVariable-
Type

Optional

Argument-
Descriptions

HasComponent Variable Path String BaseDataVariable-
Type

Optional

ArgumentDescriptions
The ArgumentDescriptions component groups the variables used to provide additional information about the
arguments of the methods. At instances of the ServiceFileInterfaceType, the variable values are filled with concrete
values (e.g., the default location in the file system for new service files).

LastCreatedServiceFile
The methods CreateServiceFile or CreateServiceFileByNodeId can be used to trigger the creation of a service
file. If one of the two methods was called, and after the creation process has been finished, the variable
LastCreatedServiceFile contains the path to the resulting service file in the file system of the machine. (The creation
of service files using the other interfaces of the machine does not have any effect on the variable.)
The property FileNodeId contains the NodeId of the FileType instance node representing the service file in the
FileSystem.
The service file can be downloaded using the NodeId of the File. To save memory resources at the machine, a client
application should delete the File after downloading it. After the referred file has been removed, the value of the
variable is emptied and the status code is set to GoodNoData. See also 9 "Machine File System Access".
If the creation of the last service file was not successful, the status code of the variable is BadDeviceFailure.

HEIDENHAIN | OPC UA Information Model | 10/2023 122

OPC UA ObjectTypes | ServiceFileInterfaceType

CreateServiceFile
Triggers the creation of a service file.
If the method returns StatusCode Good, the creation process has been started successfully. Depending on the
amount of data to integrate in the service file, the creation can take from a few seconds up to very few minutes. After
the process has been finished, the variable LastCreatedServiceFile is updated, see LastCreatedServiceFile.
Table 153: CreateServiceFile Attributes

Attribute Value

BrowseName CreateServiceFile

Signature
 CreateServiceFile{
 [in] String FileNamePrefix
 [in] String Path
 };

Table 154: CreateServiceFile Signature

Argument Description

FileNamePrefix The prefix that is used for the service file name. By system default, the resulting file
name will also contain the creation time stamp.
If the argument is empty or omitted, the system default name is used.

Path Full path where the service file will be stored.
If the argument is empty or omitted, the system default path is used.

Along with the InputArguments and OutputArguments properties, the CreateServiceFile method has the references
listed in Table 155.
Table 155: CreateServiceFile Additional References

ReferenceType IsForward Target Path

HasOptionalInputArgumentDescription True ArgumentDescriptions FileNamePrefix

HasOptionalInputArgumentDescription True ArgumentDescriptions Path

Table 156: CreateServiceFile Result Codes

Result Code Description

BadInvalidState The creation of a service file could not be started at the moment. Possible reasons
are:

The machine is already creating a service file at the moment.
The server is not fully initialized yet or is shutting down.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.
Result codes of input arguments at inputArgumentResults (except Good):
FileNamePrefix

BadInvalidArgument: the file name prefix is invalid (e.g., it contains spaces)
BadNotSupported: the file name would exceed the maximum file system path
length
Uncertain: the destination path including the file name would exceed the
maximum file system path length

Path
BadInvalidArgument: the path does not specify a valid target directory for a service
file (e.g., it is a relative path or contains invalid characters)
BadOutOfRange: the path denotes a location in the file system, where the service
file cannot be stored

HEIDENHAIN | OPC UA Information Model | 10/2023 123

OPC UA ObjectTypes | ServiceFileInterfaceType

Result Code Description
BadNotFound: the path does not denote a location on an existing partition in the
file system of the machine
BadNoMatch: the path (or a part of it) denotes a file instead of a directory
BadUserAccessDenied: the user has insufficient rights to create a service file at
this location
BadNotSupported: the path denotes a location that exceeds the maximum file
system path length
Uncertain: the path including the file name would exceed the maximum file
system path length

Bad Saving the service file failed (e.g., due to missing write-rights at the specified file
system location or incomplete service file configuration). Machine-specific adapta-
tions of the service file configuration can be done by the machine manufacturer.

BadInternalError Some other internal error occurred; creation of a service file could not be triggered.

BadUnexpectedError Some other unexpected occurred error during execution. In case of this issue,
contact HEIDENHAIN technical support.

HEIDENHAIN | OPC UA Information Model | 10/2023 124

OPC UA ObjectTypes | ServiceFileInterfaceType

CreateServiceFileByNodeId
Triggers the creation of a service file similar to CreateServiceFile. Instead of using a string path to specify the
destination directory in the FileSystem, the NodeId of the FileDirectory is used.
If the method returns StatusCode Good, the creation process has been started successfully. Depending on the
amount of data to integrate in the service file, the creation can take from a few seconds up to very few minutes. After
the process has been finished, the variable LastCreatedServiceFile is updated, see LastCreatedServiceFile.
Table 157: CreateServiceFileByNodeId Attributes

Attribute Value

BrowseName CreateServiceFileByNodeId

Signature
 CreateServiceFileByNodeId{
 [in] String FileNamePrefix
 [in] NodeId Location
 };

Table 158: CreateServiceFileByNodeId Signature

Argument Description

FileNamePrefix The prefix that will be used for the service file name. By system default, the resulting
file name will also contain the creation time stamp.
If the argument is empty or omitted, the systems default name is used.

Location NodeId of the FileDirectory where the service file will be stored.
If the argument is empty or omitted, the systems default location is used.

Along with the InputArguments and OutputArguments properties, the CreateServiceFileByNodeId method has the
references listed in Table 159.
Table 159: CreateServiceFileByNodeId Additional References

ReferenceType IsForward Target Path

HasOptionalInputArgumentDescription True ArgumentDescriptions FileNamePrefix

HasOptionalInputArgumentDescription True ArgumentDescriptions Location

Table 160: CreateServiceFileByNodeId Result Codes

Result Code Description

BadInvalidState The creation of a service file could not be started at the moment. Possible reasons
are:

The machine is already creating a service file at the moment.
The server is not fully initialized yet or is shutting down.

BadInvalidArgument At least one of the input arguments was invalid; more information is given at the
inputArgumentResults.
Result codes of input arguments at inputArgumentResults (except Good):
FileNamePrefix

BadInvalidArgument: the file name prefix is invalid (e.g., it contains spaces)
BadNotSupported: the file name would exceed the file system maximum
Uncertain: the destination path including the file name would exceed the
maximum file system path length

Location
BadInvalidArgument: the NodeId does not specify a valid target directory for a
service file
BadNoMatch: the node with the given NodeId is not a FileDirectory
BadNodeIdUnknown: no node with the given NodeId exists

HEIDENHAIN | OPC UA Information Model | 10/2023 125

OPC UA ObjectTypes | ServiceFileInterfaceType

Result Code Description
BadUserAccessDenied: the user has insufficient rights to create a service file at
this location
BadNotSupported: the location has a path length exceeds the maximum file
system path length
Uncertain: the resulting path including the file name would exceed the maximum
file system path length

Bad Saving the service file failed (e.g., due to missing write-rights at the specified file
system location or incomplete service file configuration). Machine-specific adapta-
tions of the service file configuration can be done by the machine manufacturer.

BadInternalError Some other internal error occurred; creation of a service file could not be triggered.

BadUnexpectedError Some other unexpected occurred error during execution. In case of this issue,
contact HEIDENHAIN technical support.

HEIDENHAIN | OPC UA Information Model | 10/2023 126

5
OPC UA EventTypes

OPC UA EventTypes | ErrorEventType

5.1 ErrorEventType
Overview
ErrorEventType is an abstract EventType indicating a change in a 4.6 "ErrorEntryListType" instance. It contains also all
information of the related error object.
See also 3.7 "Errors, Warnings and Notifications" for an overview of the HEIDENHAIN control error concept and its
representation in the address space.

Attributes
Table 161: ErrorEventType Definition Attributes

Attribute Value

BrowseName ErrorEventType

IsAbstract true

References
ErrorEventType is a subtype of BaseEventType, which means it inherits the InstanceDeclarations of that Node.
Table 162: ErrorEventType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasSubtype EventType ErrorClearedEventType defined in 5.2

HasSubtype EventType ErrorOccurredEventType defined in 5.3

HasProperty Variable Action String PropertyType Mandatory

HasProperty Variable Cause String PropertyType Mandatory

HasProperty Variable Channel UInt32 PropertyType Mandatory

HasProperty Variable Class ErrorClass-
Type

PropertyType Mandatory

HasProperty Variable Group ErrorGroup-
Type

PropertyType Mandatory

HasProperty Variable Internals String PropertyType Mandatory

HasProperty Variable Location Error-
Location-
Type

PropertyType Mandatory

HasProperty Variable Number UInt32 PropertyType Mandatory

HasProperty Variable NumberAsText String PropertyType Mandatory

HasProperty Variable Text String PropertyType Mandatory

HasProperty Variable ErrorEntryNodeId NodeId PropertyType Mandatory

Action
A description of possible actions that can be taken to fix the error.

Cause
The cause that triggered the error.

Channel
The ID of the channel where the error originated. If the error is not related to a channel, the value is the data type's
corresponding maximum integer value.
(The status code of the Channel property value of the corresponding 4.5 "ErrorEntryType" instance is set to
GoodNoData.)

Class
Classification of the error. The value of Class is a 7.1 "ErrorClassType" enumeration value.

HEIDENHAIN | OPC UA Information Model | 10/2023 128

OPC UA EventTypes | ErrorEventType

Group
The group that the error belongs to. The value of Group is a 7.2 "ErrorGroupType" enumeration value.

Internals
Internal error details as multi-line text.

Location
The location of the error. The value of Location is a 7.3 "ErrorLocationType" enumeration value.

Number
The number of the error.
Each error has a number. But because of, for example, the possibility of parameterizing the error message texts, the
number is not a unique identifier of an error object.

NumberAsText
Error number as displayed on the control.

Text
Error message text that is displayed on the control's error list.

ErrorEntryNodeId
NodeId of the corresponding 4.5 "ErrorEntryType" instance within at least one ErrorEntryList instance.

HEIDENHAIN | OPC UA Information Model | 10/2023 129

OPC UA EventTypes | ErrorClearedEventType

5.2 ErrorClearedEventType
Overview
ErrorClearedEventType is a subtype of 5.1 "ErrorEventType" indicating that an error is cleared and removed from a 4.6
"ErrorEntryListType" instance. It provides all properties of the 4.5 "ErrorEntryType" instance that is cleared.
See also 3.7 "Errors, Warnings and Notifications" for an overview of the HEIDENHAIN control error concept and its
representation in the address space.

Attributes
Table 163: ErrorClearedEventType Definition Attributes

Attribute Value

BrowseName ErrorClearedEventType

IsAbstract false

References
ErrorClearedEventType is a subtype of 5.1 "ErrorEventType", which means it inherits the InstanceDeclarations of that
Node.

HEIDENHAIN | OPC UA Information Model | 10/2023 130

OPC UA EventTypes | ErrorOccurredEventType

5.3 ErrorOccurredEventType
Overview
ErrorOccurredEventType is a subtype of 5.1 "ErrorEventType" indicating that an error occurred and was added to a 4.6
"ErrorEntryListType" instance. It provides all properties of the 4.5 "ErrorEntryType" instance that occurred.
See also 3.7 "Errors, Warnings and Notifications" for an overview of the HEIDENHAIN control error concept and its
representation in the address space.

Attributes
Table 164: ErrorOccurredEventType Definition Attributes

Attribute Value

BrowseName ErrorOccurredEventType

IsAbstract false

References
ErrorOccurredEventType is a subtype of 5.1 "ErrorEventType", which means it inherits the InstanceDeclarations of that
Node.

HEIDENHAIN | OPC UA Information Model | 10/2023 131

OPC UA EventTypes | NCTransitionEventType

5.4 NCTransitionEventType
Overview
An event reported when the state of, for example, a 4.2 "NCStateMachineType" instance changes. See 3.4 "NC State
Machine" and 3.6 "NC Program Execution Monitoring and Control" for details.

Attributes
Table 165: NCTransitionEventType Definition Attributes

Attribute Value

BrowseName NCTransitionEventType

IsAbstract false

References
NCTransitionEventType is a subtype of TransitionEventType, which means it inherits the InstanceDeclarations of that
Node.
Table 166: NCTransitionEventType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable 0:Message Localized-
Text

PropertyType Mandatory

HasComponent Variable TransitionReason Localized-
Text

BaseDataVariable-
Type

Mandatory

TransitionReason
The reason why the state transition has taken place.

HEIDENHAIN | OPC UA Information Model | 10/2023 132

OPC UA EventTypes | ExecutionMessageEventType

5.5 ExecutionMessageEventType
Overview
ExecutionMessageEventType events are messages sent by the NC program on specific NC program commands (FN
38: SEND). It can be used for communication between an NC program and a remote application.

Attributes
Table 167: ExecutionMessageEventType Definition Attributes

Attribute Value

BrowseName ExecutionMessageEventType

IsAbstract false

References
ExecutionMessageEventType is a subtype of BaseEventType, which means it inherits the InstanceDeclarations of that
Node.

HEIDENHAIN | OPC UA Information Model | 10/2023 133

OPC UA EventTypes | ToolChangedEventType

5.6 ToolChangedEventType
Overview
An event of type ToolChangedEventType is reported when a tool change of a channel has been completed. It provides
information about the exchanged tools.

HEIDENHAIN recommends using the CurrentTool of 4.12 "ChannelType" added with version 1.03 to identify
the currently used tool and monitor it with a data change subscription.
For compatibility reasons, events of type ToolChangedEventType are still provided by the OPC UA NC Server
at the moment. The support of the events might be discontinued in a future version of the server.

Attributes
Table 168: ToolChangedEventType Definition Attributes

Attribute Value

BrowseName ToolChangedEventType

IsAbstract false

References
ToolChangedEventType is a subtype of BaseEventType, which means it inherits the InstanceDeclarations of that Node.
Table 169: ToolChangedEventType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable ToolInId UInt32 PropertyType Mandatory

HasProperty Variable ToolOutId UInt32 PropertyType Mandatory

HasProperty Variable ChannelId UInt32 PropertyType Mandatory

HasProperty Variable ToolInIndex UInt32 PropertyType Mandatory

HasProperty Variable ToolOutIndex UInt32 PropertyType Mandatory

HasProperty Variable 0:Message Localized-
Text

PropertyType Mandatory

ToolInId
The number of the tool that was inserted.

ToolOutId
The number of the tool that was removed.

ChannelId
The machining channel where the tool change has taken place.

ToolInIndex
The index of the tool that was inserted.

ToolOutIndex
The index of the tool that was removed.

HEIDENHAIN | OPC UA Information Model | 10/2023 134

OPC UA EventTypes | ToolDataSetModificationEventType

5.7 ToolDataSetModificationEventType
Overview
ToolDataSetModificationEventType is an event describing changes of the machine's tool data.
It is part of the functionality of a LocalToolDataSet of 4.22 "LocalToolDataSetType".

Attributes
Table 170: ToolDataSetModificationEventType Definition Attributes

Attribute Value

BrowseName ToolDataSetModificationEventType

IsAbstract false

References
ToolDataSetModificationEventType is a subtype of BaseEventType, which means it inherits the InstanceDeclarations
of that Node.
Table 171: ToolDataSetModificationEventType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasComponent Variable Records ToolRecord-
Modifi-
cation-
DataType[]

BaseDataVariable-
Type

Mandatory

Records
Each element of the Records array contains the description of the change that has happened to one tool record.

HEIDENHAIN | OPC UA Information Model | 10/2023 135

OPC UA EventTypes | BaseToolEventType

5.8 BaseToolEventType
Overview
BaseToolEventType is an abstract EventType and supertype to more specific tool (data) related event types.
See also "Terms", Page 24.

Attributes
Table 172: BaseToolEventType Definition Attributes

Attribute Value

BrowseName BaseToolEventType

IsAbstract true

References
BaseToolEventType is a subtype of BaseEventType, which means it inherits the InstanceDeclarations of that Node.
Table 173: BaseToolEventType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasSubtype EventType ToolLockedEventType defined in 5.9

HasProperty Variable ToolDatabaseId String PropertyType Mandatory

HasProperty Variable ToolNumber UInt32 PropertyType Mandatory

HasProperty Variable ToolIndex Byte PropertyType Mandatory

HasProperty Variable ToolName String PropertyType Optional

ToolDatabaseId
The database ID of the tool that the event concerns.

ToolNumber
The number of the tool that the event concerns. The tool record is identified by ToolNumber and ToolIndex.

ToolIndex
The index of the tool that the event concerns. The tool record is identified by ToolNumber and ToolIndex.

ToolName
The name of the tool (index) that the event concerns.

HEIDENHAIN | OPC UA Information Model | 10/2023 136

OPC UA EventTypes | ToolLockedEventType

5.9 ToolLockedEventType
Overview
ToolLockedEventType is a subtype of 5.8 "BaseToolEventType" indicating that the Locked status of a tool record has
changed. In case of an indexed tool, each index has its own Locked status.
If a tool (index) has been locked (Locked is True) the tool (index) cannot be used anymore, meaning that it cannot
successfully be called and used for machining operations. Possible reasons are, for example, expiration of the tool's
life time, a detected broken tool, or a manual change of the tool's status after an visual inspection by the operator. If
one index of an indexed tool is locked, other indices of the tool are not necessarily affected.

Attributes
Table 174: ToolLockedEventType Definition Attributes

Attribute Value

BrowseName ToolLockedEventType

IsAbstract false

References
ToolLockedEventType is a subtype of 5.8 "BaseToolEventType", which means it inherits the InstanceDeclarations of
that Node.
Table 175: ToolLockedEventType Definition References

ReferenceType NodeClass BrowseName DataType TypeDefinition ModellingRule

HasProperty Variable Locked Boolean PropertyType Mandatory

HasProperty Variable 0:Message String PropertyType Mandatory

Locked
The new Locked status of the tool (index).

HEIDENHAIN | OPC UA Information Model | 10/2023 137

6
OPC UA Variable-

Types

OPC UA VariableTypes | CutterLocationArrayType

6.1 CutterLocationArrayType
Overview
A variable containing an array of cutter location coordinates of type 7.7 "CutterLocationDataType" used to indicate
the position of the tool tip (see 4.12 "ChannelType"). Each entry of the array contains one coordinate.

Attributes
Table 176: CutterLocationArrayType Definition Attributes

Attribute Value

BrowseName CutterLocationArrayType

IsAbstract false

ValueRank 1 (1 = OneDimension)

DataType CutterLocationDataType

ArrayDimensions {0} (0 = UnknownSize)

References
CutterLocationArrayType is a subtype of BaseDataVariableType, which means it inherits the InstanceDeclarations of
that Node.

HEIDENHAIN | OPC UA Information Model | 10/2023 140

OPC UA VariableTypes | ProgramPositionArrayType

6.2 ProgramPositionArrayType
Overview
A variable of type ProgramPositionArrayType is used to describe a program call stack. Each entry describes a position
within a program using the 7.8 "ProgramPositionDataType". The entry with CallStack 0 denotes the main program,
followed by the first called subprogram with 1, if one is called. The entry with the highest CallStack number describes
the (sub)program being executed as well as the respective current block.

Attributes
Table 177: ProgramPositionArrayType Definition Attributes

Attribute Value

BrowseName ProgramPositionArrayType

IsAbstract false

ValueRank 1 (1 = OneDimension)

DataType ProgramPositionDataType

ArrayDimensions {0} (0 = UnknownSize)

References
ProgramPositionArrayType is a subtype of BaseDataVariableType, which means it inherits the InstanceDeclarations of
that Node.

HEIDENHAIN | OPC UA Information Model | 10/2023 141

7
OPC UA DataTypes

OPC UA DataTypes | ErrorClassType

7.1 ErrorClassType
Overview
The ErrorClassType enumeration is used for example at the 4.5 "ErrorEntryType" Class property to classify
ErrorEntries as, for example, errors, warnings and notifications.

Attributes
Table 178: ErrorClassType Definition Attributes

Attribute Value

BrowseName ErrorClassType

IsAbstract false

References
ErrorClassType is a subtype of Enumeration, which means it inherits the InstanceDeclarations of that Node.

Enumeration
Table 179: ErrorClassType Values

Value DisplayName Description

0 None No error class has been specified by the underlying systems

1 Warning A warning without effect on the machine or execution

2 FeedHold An error with execution feed hold

3 ProgramHold An error with execution program hold

4 ProgramAbort An error resulting in execution program abort

5 EmergencyStop An error resulting in a machine emergency stop

6 Reset An error resulting in a machine emergency stop; a control reset is
required

7 Info A message without any effect on the machine or execution

8 Error An error without any effect on the machine or execution

9 Note A notification without any effect on the machine or execution

HEIDENHAIN | OPC UA Information Model | 10/2023 144

OPC UA DataTypes | ErrorGroupType

7.2 ErrorGroupType
Overview
The ErrorGroupType enumeration is used for example at the 4.5 "ErrorEntryType" Group property. It denotes for
example whether an error is related to a programming error, the PLC or the execution of a Python script.

Attributes
Table 180: ErrorGroupType Definition Attributes

Attribute Value

BrowseName ErrorGroupType

IsAbstract false

References
ErrorGroupType is a subtype of Enumeration, which means it inherits the InstanceDeclarations of that Node.

Enumeration
Table 181: ErrorGroupType Values

Value DisplayName Description

0 None No error group has been specified by the underlying systems

1 Operating Operating errors

2 Programming Programming errors

3 PLC PLC errors

4 General General errors

5 Remote Errors raised by remote clients

6 Python Errors raised by Python scripts

HEIDENHAIN | OPC UA Information Model | 10/2023 145

OPC UA DataTypes | ErrorLocationType

7.3 ErrorLocationType
Overview
The ErrorLocationType enumeration is used for example at the 4.5 "ErrorEntryType" Location property. It describes
whether an error is raised during a machining or editor process for example.

Attributes
Table 182: ErrorLocationType Definition Attributes

Attribute Value

BrowseName ErrorLocationType

IsAbstract false

References
ErrorLocationType is a subtype of Enumeration, which means it inherits the InstanceDeclarations of that Node.

Enumeration
Table 183: ErrorLocationType Values

Value DisplayName Description

0 None No error location has been specified by the underlying systems

1 Machine The error originated in the machining process

2 Edit The error originated in the editor process

3 OEM The error originated in a process of the machine manufacturer

HEIDENHAIN | OPC UA Information Model | 10/2023 146

OPC UA DataTypes | NCOperatingMode

7.4 NCOperatingMode
Overview
The NCOperatingMode enumeration is used for example at the 4.12 "ChannelType" to describe the current operating
mode of the machining channel.

Attributes
Table 184: NCOperatingMode Definition Attributes

Attribute Value

BrowseName NCOperatingMode

IsAbstract false

References
NCOperatingMode is a subtype of Enumeration, which means it inherits the InstanceDeclarations of that Node.

Enumeration
Table 185: NCOperatingMode Values

Value DisplayName Description

0 Manual Manual operation mode

1 MDI Manual Data Input

2 RFP Traversing the reference points

3 SingleStep Program Run Single Block

4 Automatic Program Run Full Sequence

5 Other Operating mode is other than the known ones

6 Handwheel Electronic handwheel operating mode

HEIDENHAIN | OPC UA Information Model | 10/2023 147

OPC UA DataTypes | ToolRecordModificationType

7.5 ToolRecordModificationType
Overview
The ToolRecordModificationType enumeration describes the different kinds of modifications of a tool record. It is
used at the 7.9 "ToolRecordModificationDataType".

Attributes
Table 186: ToolRecordModificationType Definition Attributes

Attribute Value

BrowseName ToolRecordModificationType

IsAbstract false

References
ToolRecordModificationType is a subtype of Enumeration, which means it inherits the InstanceDeclarations of that
Node.

Enumeration
Table 187: ToolRecordModificationType Values

Value DisplayName Description

0 Insert A new record has been added

1 Replace Contents of an existing record have been replaced

2 Delete An existing record has been removed

HEIDENHAIN | OPC UA Information Model | 10/2023 148

OPC UA DataTypes | ToolDataSynchronizationStatusType

7.6 ToolDataSynchronizationStatusType
Overview
The ToolDataSynchronizationStatusType enumeration is used at the 4.22 "LocalToolDataSetType" to indicate the
status including the availability of its functionality.

Attributes
Table 188: ToolDataSynchronizationStatusType Definition Attributes

Attribute Value

BrowseName ToolDataSynchronizationStatusType

IsAbstract false

References
ToolDataSynchronizationStatusType is a subtype of Enumeration, which means it inherits the InstanceDeclarations of
that Node.

Enumeration
Table 189: ToolDataSynchronizationStatusType Values

Value DisplayName Description

0 NotAvailable Update information is not available and change notifications are
paused

1 Idle Update information is available, but synchronization is not enabled

2 Initializing Synchronization is in progress

3 Synchronized Updates refer to an already initialized data set

HEIDENHAIN | OPC UA Information Model | 10/2023 149

OPC UA DataTypes | CutterLocationDataType

7.7 CutterLocationDataType
Overview
CutterLocationDataType is a Structure describing one coordinate of the location of the cutter. An array of
CutterLocations describes the location of the cutter in a multidimensional space (see 6.1 "CutterLocationArrayType").

Attributes
Table 190: CutterLocationDataType Definition Attributes

Attribute Value

BrowseName CutterLocationDataType

IsAbstract false

References
CutterLocationDataType is a subtype of Structure, which means it inherits the InstanceDeclarations of that Node.

Structure
Table 191: CutterLocationDataType Structure

Name Type ValueRank Description

Position Double −1 (−1 = Scalar) The position value

PositionEngineering-
Units

EUInformation −1 (−1 = Scalar) The engineering unit of the position value

CoordinateName String −1 (−1 = Scalar) The name of this coordinate

HEIDENHAIN | OPC UA Information Model | 10/2023 150

OPC UA DataTypes | ProgramPositionDataType

7.8 ProgramPositionDataType
Overview
ProgramPostitionDataType is a Structure describing one line within a program using the name of the program and a
block number with its content. An array of ProgramPositions is used to describe a whole program call stack from the
main program to the currently executed subprogram (see 3.6 "NC Program Execution Monitoring and Control" and
6.2 "ProgramPositionArrayType").
In order to define the order that the programs have been called in, ProgramPositionDataType additionally has a
CallStackLevel.

Attributes
Table 192: ProgramPositionDataType Definition Attributes

Attribute Value

BrowseName ProgramPositionDataType

IsAbstract false

References
ProgramPositionDataType is a subtype of Structure, which means it inherits the InstanceDeclarations of that Node.

Structure
Table 193: ProgramPositionDataType Structure

Name Type ValueRank Description

ProgramName String −1 (−1 = Scalar) NC program name

BlockNumber UInt32 −1 (−1 = Scalar) Block number of the NC program

BlockContent String −1 (−1 = Scalar) Block content of the NC program

CallStackLevel UInt32 −1 (−1 = Scalar) The level of depth of the call stack. The
main program is at CallStackLevel 0. The
CallStackLevel is incremented for each
subsequent subprogram

HEIDENHAIN | OPC UA Information Model | 10/2023 151

OPC UA DataTypes | ToolRecordModificationDataType

7.9 ToolRecordModificationDataType
Overview
ToolRecordModificationDataType is a Structure describing a change of a tool data record at the machine. If it is an
insertion or update, it contains also the new record. It is used at 5.7 "ToolDataSetModificationEventType".

Attributes
Table 194: ToolRecordModificationDataType Definition Attributes

Attribute Value

BrowseName ToolRecordModificationDataType

IsAbstract false

References
ToolRecordModificationDataType is a subtype of Structure, which means it inherits the InstanceDeclarations of that
Node.

Structure
Table 195: ToolRecordModificationDataType Structure

Name Type ValueRank Description

Version UInt32 −1 (−1 = Scalar) The data set version that this change refers
to

RecordIdentifier ToolRecord-
IdentifierDataType

−1 (−1 = Scalar) Tool number and index of the tool record

ModificationType ToolRecordModifi-
cationType

−1 (−1 = Scalar) The kind of modification that has happened

RecordUpdate String −1 (−1 = Scalar) The new record content as string

HEIDENHAIN | OPC UA Information Model | 10/2023 152

OPC UA DataTypes | ToolRecordIdentifierDataType

7.10 ToolRecordIdentifierDataType
Overview
ToolRecordIdentifierDataType is a Structure describing the identifier of a tool record. It consists of a ToolNumber and
a ToolIndex. A ToolRecordIdentifier uniquely identifies a tool record within a machine.
See also "Terms", Page 24.

Attributes
Table 196: ToolRecordIdentifierDataTypeDefinition Attributes

Attribute Value

BrowseName ToolRecordIdentifierDataType

IsAbstract false

References
ToolRecordIdentifierDataType is a subtype of Structure, which means it inherits the InstanceDeclarations of that Node.

Structure
Table 197: ToolRecordModificationDataType Structure

Name Type ValueRank Description

ToolNumber UInt32 −1 (−1 = Scalar) The tool's number

ToolIndex Byte −1 (−1 = Scalar) The tool's additional index

HEIDENHAIN | OPC UA Information Model | 10/2023 153

OPC UA DataTypes | MagazinePocketIdentifierDataType

7.11 MagazinePocketIdentifierDataType
Overview
MagazinePocketIdentifierDataType is a Structure describing the identifier of a pocket in a tool magazine of the
machine. It consists of a MagazineNumber and a PocketNumber. A MagazinePocketIdentifier uniquely identifies a tool
pocket within a machine.

Attributes
Table 198: MagazinePocketIdentifierDataType Attributes

Attribute Value

BrowseName MagazinePocketIdentifierDataType

IsAbstract false

References
MagazinePocketIdentifierDataType is a subtype of Structure, which means it inherits the InstanceDeclarations of that
Node.

Structure
Table 199: MagazinePocketIdentifierDataType Structure

Name Type ValueRank Description

MagazineNumber Byte −1 (−1 = Scalar) Identifier of the magazine

PocketNumber UInt32 −1 (−1 = Scalar) The pocket within the magazine

HEIDENHAIN | OPC UA Information Model | 10/2023 154

8
Namespaces

Namespaces | Namespace Metadata

8.1 Namespace Metadata
Table 200 and Table 201 define the namespace metadata for this specification. The Object is used to provide version
information for the namespace and an indication about static Nodes. Static Nodes are identical for all Attributes in all
Servers, including the Value Attribute. See OPC UA Part 5 for more details.
The information is provided as Object of type NamespaceMetadataType. This Object is a component of the
Namespaces Object that is part of the Server Object. The NamespaceMetadataType ObjectType and its Properties are
defined in OPC UA Part 5.

Attributes
Table 200: OPC UA NC Server Core NamespaceMetadata Object Attributes

Attribute Value

BrowseName http://heidenhain.de/NC/

References
Table 201: OPC UA NC Server Core NamespaceMetadata Object References

References BrowseName DataType Value

HasProperty NamespaceUri String http://heidenhain.de/NC/

HasProperty NamespaceVersion String 1.5.0

HasProperty NamespacePublicationDate DateTime 2023-06-30

HasProperty IsNamespaceSubset Boolean False

HasProperty StaticNodeIdTypes IdType[] {Numeric}

HasProperty StaticNumericNodeIdRange NumericRange[] Null

HasProperty StaticStringNodeIdPattern String Null

NamespaceVersion
Note that the version number schema of the information model (document) omits the last number as given in
NamespaceVersion (see "About this Document", Page 8). The third number of the NamespaceVersion can be used by
the OPC UA NC Server to indicate small changes like error corrections between information model version releases
adding new contents.

IsNamespaceSubset
Note that the IsNamespaceSubset property is set to False if the UaNodeSet XML file as well as the Server's address
space contain the complete namespace. Servers only exposing a subset of the namespace need to change the value
to True.

HEIDENHAIN | OPC UA Information Model | 10/2023 156

Namespaces | Handling of OPC UA Namespaces

8.2 Handling of OPC UA Namespaces
Namespaces are used by OPC UA to create unique identifiers across different naming authorities. The Attributes
NodeId and BrowseName are identifiers. A Node in the UA AddressSpace is unambiguously identified using a NodeId.
Unlike NodeIds, the BrowseName cannot be used to unambiguously identify a Node. Different Nodes may have the
same BrowseName. They are used to build a browse path between two Nodes or to define a standard Property.
Servers may often choose to use the same namespace for the NodeId and the BrowseName. However, if they want
to provide a standard Property, its BrowseName shall have the namespace of the standard although the namespace
of the NodeId reflects something else, for example the EngineeringUnits Property. All NodeIds of Nodes not defined in
this specification shall not use the standard namespaces.
Table 202 provides a list of mandatory and optional namespaces used in an OPC UA Server implementing the Core
Information Model.
Table 202: Namespaces used in an OPC UA Server implementing the Core Information Model

NamespaceURI Description Use

http://opcfoundation.org/UA/ Namespace for NodeIds and BrowseNames defined in
the OPC UA specification. This namespace shall have
namespace index 0.

Mandatory

Local Server URI Namespace for nodes defined in the local server. This
namespace shall have namespace index 1.

Mandatory

http://heidenhain.de/NC/ Namespace for NodeIds and BrowseNames defined in this
specification.
The namespace index is Server-specific.

Mandatory

Machine-specific extensions Namespace(s) of machine-specific extensions defined by
the machine manufacturer.
The namespace indices are Server--specific.

Optional

Table 203 provides a list of namespaces and their indices used for BrowseNames in this specification. The default
namespace of this specification is not listed since all BrowseNames without prefix use this default namespace.
Table 203: Namespaces used in this specification

NamespaceURI Namespace Index Example

http://opcfoundation.org/UA/ 0 0:EngineeringUnits

HEIDENHAIN | OPC UA Information Model | 10/2023 157

9
Machine File

System Access

Machine File System Access | Introduction

9.1 Introduction
This chapter unites information about access to the machine's file system using the functionality provided by the
OPC UA NC Server. Below, a general introduction states how the file system access is integrated into the different
types of the Core Information Model and how access rights are handled.
9.2 "FileDirectoryType" and 9.3 "FileType" provide general information about the OPC UA standard types FileType and
FileDirectoryType and additional detailed information regarding their application within the OPC UA NC Server.
Especially for OPC UA client application developers, useful hints and important warnings regarding different aspects
of file system access and file transfer to and from the machine are given in 9.4 "Warnings and Important Hints".

HEIDENHAIN | OPC UA Information Model | 10/2023 160

Machine File System Access | Introduction

File System Component
Following the definition of "File Transfer" in OPC UA Part 20, the entry point to the file system representation is a
FileDirectoryType instance node with the BrowseName FileSystem. The FileSystem is an optional component of the
MachineType.
Every directory of the machine's file system is represented with a node of type FileDirectoryType. Beginning with
the file system partition nodes (e.g., TNC) below the FileSystem component of the MachineType, every FileDirectory
Organizes the containing files and directories.
Within this chapter the term File System is used to describe all the nodes in the hierarchy below the Machine's
FileSystem component.

Example: Machine Instance
(Note: Due to clarity, several components are
omitted, e.g., other components of Machine

or FileSystem)MachineType:
Machine

0:FileDirectoryType:
FileSystem

Organizes

0:FileDirectoryType:
TNC

0:FileDirectoryType:
PLC

0:FileDirectoryType:
nc_prog

Organizes

0 :FileType:
ExampleProgram.h

Organizes

SizeCreateDirectory

CreateFile

Delete

MoveOrCopy

OpenCount

Writable

UserWritable

Open

GetPosition

SetPosition

Read

Write

Close

Figure 19: Shortened example of a Machine instance with FileSystem

The FileType and FileDirectoryType with their methods and properties are defined in OPC UA Part 20 and additionally
described in 9.3 "FileType" and 9.2 "FileDirectoryType".

HEIDENHAIN | OPC UA Information Model | 10/2023 161

Machine File System Access | Introduction

Note that it is not possible to directly use the methods of the FileSystem node, since the first level of the exposed file
system (TNC and PLC partitions) cannot be changed. FileDirectoryType methods can be used starting with the TNC
and PLC nodes (see 9.2 "FileDirectoryType").

File System Access Rights
Access to the different parts of the File System is restricted. To access Files and FileDirectories on the PLC partition,
for example, an OPC UA client user needs the corresponding right (i.e. the right HEROS.FileOEM to access to the File
System PLC partition).
Access rights are managed by the machine's operating system user administration. HEIDENHAIN control-specific
information about access-right handling can be found in the respective user manuals.
Further information: Setup, Testing and Running NC Programs User’s Manual, or Setup and Program Run User’s
Manual
In general the rights of the OPC UA client user to create, delete, move, copy, read and write a File correspond to the
machine's operating system user rights. Note that write access to some Files is additionally restricted as described in
Protected and Locked Files in 9.4 "Warnings and Important Hints".

Relations between File System and Machining Channel
The ChannelType and its (sub)components like the Program's ExecutionState (of type NCProgramStateMachineType)
have methods like SelectProgram which need the string representation of a file system path as InputArgument.
These types are extended with optional methods accepting the NodeId of a File. For example, the method
SelectProgramByNodeId can be used instead with the NodeId of the File representing the NC program that should be
selected for execution.
When an NC program is selected as Program of a Channel, the optional FileNodeId property of the Program's Name
variable contains the NodeId of the File corresponding to the NC program. Using this NodeId the NC program File can,
for example, be downloaded.
Additional information can be found at the respective type definitions 4.12 "ChannelType", 4.14 "ProgramType" and
4.15 "NCProgramStateMachineType".

HEIDENHAIN | OPC UA Information Model | 10/2023 162

Machine File System Access | Introduction

Example: Machine Instance with FileSystem
(Note: Due to clarity, several components are
omitted, e.g., other components of Machine,

Channel 0 or FileSystem)

MachineType:
Machine

0:FileDirectoryType:
FileSystem

Organizes

0:FileDirectoryType:
TNC

0:FileDirectoryType:
nc_prog

Organizes

0 :FileType:
ExampleProgram.h

Organizes

Size

OpenCount

Writable

UserWritable

Open

GetPosition

SetPosition

Read

Write

Close

ChannelListType:
Channels

ChannelType:
0

ProgramType:
Program

ImportToolUsageCSVByNodeId

Name

FileNodeId

NCProgramStateMachineType:
ExecutionState

SelectProgramByNodeId

contains
NodeId from

called with
NodeId of

Figure 20: Shortened example of a Machine instance with the relation between
machining channel-related types and FileSystem

HEIDENHAIN | OPC UA Information Model | 10/2023 163

Machine File System Access | FileDirectoryType

9.2 FileDirectoryType
Every directory within the machine's file system is represented with a node of type FileDirectoryType. A FileDirectory
provides methods to create, delete, copy and move Files and FileDirectories, and is defined in OPC UA Part 20.

FileDirectoryType Methods
Each FileDirectory has several methods to execute actions on Organized Files and FileDirectories below it:

CreateDirectory: create a new FileDirectory below this node with the given name
CreateFile: create a new File below this node with the given name (including the file type suffix)
Delete: delete the specified existing File or FileDirectory node below this node
MoveOrCopy: move or copy a File or FileDirectory below this node to another location (below another FileDirectory
node)

FileDirectory methods can only be used for files or directories directly Organized by them. For example, if the File
ExampleProgram.h in Image 19 should be deleted, the Delete method of the nc_prog FileDirectory has to be used.
An exception is the Delete method. If a directory is deleted, also all containing files and directories are deleted
automatically. Note that a good return code is only given if the deletion of all contents and the directory itself was
successful. If, for example, one of the contained files could not be deleted, the return codes in Table 206 apply. But all
other files and directories that are also in the directory are deleted.
FileDirectoryType method return codes are defined in general in OPC UA Part 4 and in more detail in OPC UA Part 20.
The tables below wrap up general information and provide additional OPC UA NC Server specific information about
the different situations.
Note that versions of the OPC UA NC Server before NC software version 18 do not support MoveOrCopy for
FileDirectories in general. The OPC UA NC Server as of NC software version 18 supports MoveOrCopy only for empty
FileDirectories. It is possible to MoveOrCopy Files.
Table 204: CreateDirectory Result Codes

Result Code Description

BadUserAccessDenied The user does not have the right to create a directory at this location.

BadBrowseNameDuplicat-
ed

A directory entry (file or directory) with the given name already exists.

BadInternalError An internal error or erroneous situation inhibits creation of the new directory at this
location.

BadNotWritable The file system that would contain the new directory is read-only.

BadNotFound The directory itself or another directory on the path does not exist (anymore).

BadResourceUnavailable A directory cannot be created due to file system resource limitations.

BadNotSupported A directory cannot be created due to technical file system limitations (e.g., if the
resulting path would exceed the maximum file system path length).

BadOutOfMemory Insufficient memory to complete the operation.

Table 205: CreateFile Result Codes

Result Code Description

BadUserAccessDenied The user does not have the right to create a file at this location.
Note the special cases for protected files (see Protected and Locked Files in 9.4
"Warnings and Important Hints"). This code is also returned in case the resulting file
would be protected with the given name at the given location.

BadBrowseNameDuplicat-
ed

A directory entry (file or directory) with the given name already exists within this
directory.

BadInternalError An internal error or erroneous situation inhibits creation of the new directory at this
location.

BadNotFound The directory itself or another directory on the path does not exist (anymore).

HEIDENHAIN | OPC UA Information Model | 10/2023 164

Machine File System Access | FileDirectoryType

Result Code Description

BadNotWritable The file system that would contain the new directory is read-only.

BadResourceUnavailable A file cannot be created due to file system resource limitations (e.g., the maximum
number of open files has been reached).

BadNotSupported A directory cannot be created due to technical file system limitations (e.g., if the
resulting path would exceed the maximum file system path length).

BadOutOfMemory Insufficient memory to complete the operation.

BadRequestInterrupted The call was interrupted, e.g, due to waiting for the response of a slow device.

Uncertain The internal file descriptor to the new file was invalid, but the file may have been
created.

If CreateFile is called with RequestFileOpen = true, the return codes of the FileType method Open also apply

Table 206: Delete Result Codes

Result Code Description

BadUserAccessDenied The user does not have the right to delete this file or directory (or an entry below the
directory).
Note the special cases for protected files (see Protected and Locked Files in 9.4
"Warnings and Important Hints").

BadInvalidArgument The element to be deleted is not a file or directory or not directly Organized by this
directory node.

BadInvalidState The file to be deleted is open at the moment (OpenCount > 0), or locked by the
control (see Protected and Locked Files in 9.4 "Warnings and Important Hints").
A file within the directory to be deleted is locked by the control.

BadNotFound The directory or file to be deleted or another directory on the path to it does not exist
(anymore).

BadInternalError An internal error or erroneous situation inhibits the deletion of the file or directory.

BadNotSupported A file or directory cannot be deleted due to technical file system limitations.

BadResourceUnavailable A file or directory cannot be deleted due to file system resource limitations at the
moment.

BadOutOfMemory Insufficient memory to complete the operation.

BadNotWritable The file system containing the file or directory is read-only.

Table 207: MoveOrCopy Result Codes

Result Code Description

BadUserAccessDenied The user does not have the right to move or copy this file. (Reasons might be insuffi-
cient rights on the source file and/or the target directory for example.)
Note the special cases for protected files (see Protected and Locked Files in 9.4
"Warnings and Important Hints").

BadNotSupported A file cannot be created due to technical file system limitations (e.g., if the resulting
path would exceed the maximum file system path length).
Note that the OPC UA NC Server before NC software version 18 does not support
moving or copying directories in general. Later versions of the server allow moving or
copying of empty directories.

BadInvalidArgument The element to be moved or copied is not a file or not directly Organized by this direc-
tory node.

BadInvalidState The file to be moved is locked by the control (see Protected and Locked Files in 9.4
"Warnings and Important Hints").

HEIDENHAIN | OPC UA Information Model | 10/2023 165

Machine File System Access | FileDirectoryType

Result Code Description

BadBrowseNameDuplicat-
ed

A file (or directory) with the given name already exists within the target directory.

BadNotFound The file to be moved or copied, the target directory, or another node on the path to it
does not exist (anymore).

BadInternalError An internal error or erroneous situation inhibits copying or moving the file.

BadResourceUnavailable The file cannot be moved or copied due to file system resource limitations.

BadOutOfMemory Insufficient memory to complete the operation.

BadNotWritable The file system containing the file or target directory is read-only.

HEIDENHAIN | OPC UA Information Model | 10/2023 166

Machine File System Access | FileType

9.3 FileType
Every file within the machine's file system is represented with a node of type FileType. A File has several properties
and methods to transfer a file to or from the machine and is defined in OPC UA Part 20.

FileType Properties
Some of the following File properties have an OPC UA NC Server specific adaptation:

Size contains the size of the File in bytes.
The optional property MimeType is not supported and thus is not present at File instances in the address space of
the OPC UA NC Server.
Writable indicates whether the File is writable in general, i.e., independent from concrete OPC UA client user rights.
UserWritable indicates whether a File can be written by the current user, i.e. if the authenticated OPC UA client user
has the right to write to the file. If the NC software is running, several files that are important for the NC software
are protected from modifying access via OPC UA. The UserWritable property of a File is set to false in this case.
See Protected and Locked Files in 9.4 "Warnings and Important Hints" for more information.
OpenCount counts only file handles of OPC UA client applications connected to the OPC UA NC Server. If a file
is opened on the machine by another UI application or remote via another interface, this is not reflected in the
OpenCount.

FileType Methods
File transfer can be realized using the methods of the FileType:

Open: open a File with the given mode (e.g., for writing) and get the resulting file handle. The file handle is the
reference for all following operations, like reading or writing.
SetPosition: sets the given file handle to the given position within the file
GetPosition: returns the current position of the given file handle
Read: returns the data of the file beginning at the given file handle's current position and ending after the given
length. The current position of the file handle is automatically shifted according to the given length (bytes that
were read).
Write: writes the given data at the given file handle's current position. The current position of the file handle is
automatically shifted according to the given data (bytes that were written).
Close: close the File using the given file handle

For a detailed description of the methods with their parameters, see OPC UA Part 20.
FileType method return codes are defined in general in OPC UA Part 4 and in more detail in OPC UA Part 20. The
tables below wrap up general information and provide additional OPC UA NC Server specific information about the
different situations.
Table 208: Open Result Codes

Result Code Description

BadUserAccessDenied The user does not have the right to open this file (for writing).
Note the special cases for protected files (see Protected and Locked Files in 9.4
"Warnings and Important Hints").

BadInvalidState The file was already open when trying to open it for Write.
The file is locked and thus not writable.

BadNotReadable The file was already open for Write when trying to open it for Read.
The file to be opened for Read is not readable.

BadNotWritable The file to be opened for Write is not writable or the file system containing the file is
read-only.

BadNotFound The file to be opened or another node on the path to it does not exist (anymore).

BadInternalError An internal error or erroneous situation inhibits opening of the file.

BadResourceUnavailable The file cannot be opened due to file system resource limitations.

BadNotSupported A file cannot be opened due to technical file system limitations.

HEIDENHAIN | OPC UA Information Model | 10/2023 167

Machine File System Access | FileType

Result Code Description

BadOutOfMemory Insufficient memory to complete the operation.

BadRequestInterrupted The call was interrupted (e.g., due to waiting for the response of a slow device).

Table 209: Close Result Codes

Result Code Description

BadInvalidArgument The given FileHandle is invalid.

BadInvalidState The file to be closed is locked by the control at the moment (see Protected and
Locked Files in 9.4 "Warnings and Important Hints").

BadNotFound The file to be closed or one node on the path to it does not exist (anymore).

BadInternalError An internal error or erroneous situation inhibits closing of the file.

BadResourceUnavailable The file cannot be closed due to file system resource limitations.

BadNotSupported A file cannot be closed due to technical file system limitations.

BadUserAccessDenied The user does not have the right to close this file.
Note the special cases for protected files (see Protected and Locked Files in 9.4
"Warnings and Important Hints").

BadOutOfMemory Insufficient memory to complete the operation.

Table 210: Read Result Codes

Result Code Description

BadInvalidArgument The given FileHandle is invalid or the given length is not positive.

BadInvalidState The file was not opened for read access.

Table 211: Write Result Codes

Result Code Description

BadInvalidArgument The given FileHandle is invalid.

BadInvalidState The file was not opened for write access.

BadNotWritable The file might be locked and thus not writable.

Table 212: GetPosition Result Codes

Result Code Description

BadInvalidArgument The given FileHandle is invalid.

Table 213: SetPosition Result Codes

Result Code Description

BadInvalidArgument The given FileHandle is invalid.

HEIDENHAIN | OPC UA Information Model | 10/2023 168

Machine File System Access | Warnings and Important Hints

9.4 Warnings and Important Hints
Within this chapter the term File System is used to describe all the nodes in the hierarchy below the Machine's
FileSystem component.

Dynamic File System AddressSpace
The File System represents the file system of the machine. The machine's file system is not static (e.g., new files
and directories are created, deleted or moved on disk). The File System part of the AddressSpace is updated during
runtime of the OPC UA NC Server to reflect these changes. This means that File and FileDirectory nodes are created
and deleted during runtime of the OPC UA NC Server.
Note that the OPC UA NC Server does not support reporting of model changes in the File System using events. This
means that no BaseModelChangeEvents are sent to publish changes to the File System.
Browsing a FileDirectory returns the references to all current Organized Files and FileDirectories.
Nodes that correspond to files or directories that have been deleted on disk are also deleted from the AddressSpace.
The OPC UA NC Server answers requests using their NodeIds accordingly. If, for example, the NodeId of a node that
corresponds to a File (e.g., the NodeId of its Size property) that has been deleted since the retrieval of the NodeId is
used within a request (e.g., to read the value), the request is answered with BadNodeIdUnknown.

Due to the size and dynamicity of the file system, unnecessary recursive browsing of the full File System is
strongly recommended against!

NodeIds of File System Nodes
The numeric NodeIds of nodes inside the File System are dynamically assigned during runtime of the OPC UA NC
Server. As long as a File or a FileDirectory stays unchanged (for example, not renamed) at the same location, the
NodeIds are not changed while the OPC UA NC Server is running.
When the OPC UA NC Server restarts, the numeric NodeIds are newly assigned. This means that the NodeIds of Files
and FileDirectories are not persistent over OPC UA NC Server lifecycles.
It is recommended to use the Browse or TranslateBrowsePathsToNodeIds requests to get the NodeIds of Files and
FileDirectories (especially after an OPC UA NC Server restart or new connection to the Server). The File System root
FileSystem can be used as start-node of the BrowsePath in a TranslateBrowsePathsToNodeIds request.
An exception is the handling of the method nodes like CreateFile. To simplify the usage of the OPC UA standard
methods for file transfer, every File or FileDirectory does not have its own instances of the methods, but instead
refers to the method nodes in the type tree. So File System methods can be called using their NodeIds defined in the
OPC UA Specification (respectively their NodeSet.xml or NodeIds.csv files).

Protected and Locked Files
Some files that are accessible within the machine's file system are highly important for a functional control and
machine. Changes to these files or format violations can cause major problems, up to the machine stopping the
production process or NC software start-up issues.
Therefore, access to the files listed in CfgTablePath (no. 102500) and CfgConfigDataFiles\dataFiles (no. 106303) is
protected while the NC software is running, by restricting access to read-only access (UserWritable is False). See also
"File System Access without Running NC Software"
Along with explicitly protected files, some files are locked by the NC software while they are in use, such as a selected
and running NC program. (The Close method will fail with the status code BadInvalidState in case the file is protected
by the NC software at that moment.)

HEIDENHAIN | OPC UA Information Model | 10/2023 169

Machine File System Access | Warnings and Important Hints

File System Access without Running NC Software
Since the OPC UA NC Server runs independently from the NC software, it is in general also possible to access
the file system and use the related functionality while the NC software is not running. This enables OPC UA client
applications, for example, to download control service files from the machine also while the NC software is not
running. (Note that "running" within this context does not mean that an NC program is being executed on the
machine, but rather only that the NC software is running.)
This state is indicated by the Machine's State CurrentState being NCIsNotConnected. During this state not all NC
software file protection mechanisms are in place. So it is possible to harm files that are important for a running NC
software and control!

Manipulating actions on the File System while the NC software is not running can harm the functionality of
the control.
Only manipulate files while the NC software is not running if you are sure that it will not cause issues
regarding the functionality of the NC software. Along with that, actions on the file system should not be
executed during the start-up or shut-down process of the NC software. The start-up and initialization of the
NC software is finished when the State (CurrentState) of the Machine is NCIsAvailable (see 3.4 "NC State
Machine").

The possibility to access the machine's file system while the NC software is not running is new compared to the
functionality provided by HEIDENHAIN DNC (see the Connected Machining brochure).

HEIDENHAIN | OPC UA Information Model | 10/2023 170

10
Extensions of

the Machine
Manufacturer

Extensions of the Machine Manufacturer | Introduction

10.1 Introduction
Starting with version 1.02 of the Core Information Model, a Machine instance of 4.1 "MachineType" can provide
machine-specific extensions at the ManufacturerExtensions component.
These extensions are configured by the machine manufacturer. So they differ between manufacturers and can also
be different from machine to machine.
Machine manufacturers can extend the OPC UA NC Server with access to data of additional sensors, machine
subsystems, or values from PLC programs. Along with providing only the raw data, they can also provide additional
information like units of measure or value ranges.
This chapter describes the concepts with an example, contains hints for OPC UA client application developers, and
lists 10.3 "Information for Machine Manufacturers".
Within this chapter, the terms machine-specific nodes and Manufacturer Extensions describe all the nodes in the
hierarchy below the Machine's ManufacturerExtensions component.

Initialization of Manufacturer Extensions
The OPC UA NC Server creates the machine-specific nodes once after the PLC program has been translated.
When the Machine's State CurrentState changes the first time to NCIsAvailable the OPC UA NC Server creates the
machine-specific nodes. During a server life cycle, the created objects and variables do not change. Changes of the
machine manufacturer like new nodes, name changes, or node deletions are applied after a server restart.
Note that the OPC UA NC Server does not support reporting of model changes for Manufacturer Extensions using
events. This means that no BaseModelChangeEvents are sent to publish changes to machine-specific nodes.

Namespace and NodeIds of Machine-Specific Nodes
Machine-specific nodes are located within additional OPC UA namespaces. They are not part of the server's
namespace with index 1. Machine manufacturers define at least one own namespace to describe the information
and data they provide. The namespaces are added to the Server's NamespaceArray when the Manufacturer
Extensions are initialized. More information about the namespaces like the version or the publication date can be
found at the corresponding NamespaceMetadataType instance at the Server's Namespaces node.
Machine manufacturers can configure NodeIds for machine-specific objects and variables using String or Numeric
Identifiers. If a manufacturer does not explicitly configure an Identifier, a Numeric Identifier is automatically generated
by the OPC UA NC Server. NodeIds of the NamespaceMetadataType instance nodes per namespace and properties of
data variables are always automatically assigned by the OPC UA NC Server.
As far as possible the OPC UA NC Server keeps the NodeIds of machine-specific nodes stable after server restarts.
But in particular changes to the configuration of the Manufacturer Extensions can cause changes of NodeIds.

HEIDENHAIN | OPC UA Information Model | 10/2023 172

Extensions of the Machine Manufacturer | Manufacturer Extensions

10.2 Manufacturer Extensions
Manufacturer Extension nodes are located in the address space hierarchy below the optional
ManufacturerExtensions component of a Machine instance. An example of machine-specific nodes is shown in
Image 21.
The ManufacturerExtensions node Organizes the machine-specific objects. These objects are always instances
of BaseObjectType. Nested structures are possible, meaning an object can also Organize more machine-specific
objects. Machine-specific variables are normally components of a machine-specific object. (But it is also possible
that they are directly referred by the ManufacturerExtensions node.)
Depending on the type and the configuration by the machine manufacturer, the variables can have several properties.
The properties provide additional information about the data value of the variable, for example, the EngineeringUnits.
Properties defined in the OPC UA Standard are used to provide this metadata.

VariableTypes with DataTypes and Metadata Properties
Machine-specific variables can be instances of DataItemType or BaseAnalogType (OPC UA Part 8) with their specified
optional properties as listed in Table 214. If the Server cannot determine the data type of a value or cannot access
the data, the DataType is BaseDataType and the Value has a corresponding bad StatusCode.
The variables have scalar data values, so the ValueRank is always -1 (Scalar).
Table 214: VariableTypes with DataTypes and Properties used for machine-specific nodes

VariableType DataType Possible Properties

Boolean -DataItemType

String MaxStringLength

SByte

Int16

Int32

EngineeringUnits
EURange
InstrumentRange

BaseAnalogType

Double EngineeringUnits
EURange
InstrumentRange
ValuePrecision

The MaxStringLength property provides the maximum number of bytes of the String value.
If an InstrumentRange is given, the OPC UA NC Server allows only write requests with values within the defined range.
If a ValuePrecision is given, it specifies the supported number of digits after the decimal point (OPC UA Part 8). This
property is provided if the corresponding internal value is of an Integer data type. If the variable is writable, providing
the valid value ranges using the corresponding properties is recommended to machine manufacturers.

User Access Rights
Every authenticated user can browse the Manufacturer Extensions and read most of the node attributes like
the BrowseName, Description or the DataType of variables. Read- or write-access to the Value attribute of data
variables is restricted to users with the corresponding user rights at the control. The Values of properties like the
EngineeringUnits of a data variable can be read by every authenticated user.
The read and write permissions of the authenticated user, i.e. access rights to a specific data value, are exposed at
the UserRolePermissions attribute of the variable.
Note that even if a user has write-access to a variable the write request can be denied by a subsystem (e.g., because
it is not allowed in the current situation).

HEIDENHAIN | OPC UA Information Model | 10/2023 173

Extensions of the Machine Manufacturer | Manufacturer Extensions

Example: Machine instance with
machine-specific extensions within

additional namespaces (ns=2, ns=3)

(Note that other components of
Machine are omitted for reasons of

clarity)

MachineType:
Machine

0:BaseObjectType:
2:Magazine

0:BaseObjectType:
3:TemperatureCompensation

Organizes

0:BaseObjectType:
ManufacturerExtensions

0:BaseAnalogType:
2:Size

0:BaseAnalogType:
3:CompensatedValue

0:EURange

0:EngineeringUnits

0:DataItemType:
2:Active

Organizes

0:InstrumentRange

0:DataItemType:
2:StatusMessage

0:MaxStringLength

0:DataItemType:
2:DoorClosed

0:ValuePrecision

Figure 21: Shortened example of a Machine instance with ManufacturerExtensions

HEIDENHAIN | OPC UA Information Model | 10/2023 174

Extensions of the Machine Manufacturer | Information for Machine Manufacturers

10.3 Information for Machine Manufacturers
Configuration of Machine-Specific Extensions
Machine-specific extensions of the OPC UA NC Server are configured using the three machine configuration
parameters CfgOpcUaNamespace (no. 133900), CfgOpcUaObject (no. 134000) and CfgOpcUaPlcVar (no. 134100).
Detailed information on how to configure machine-specific namespaces and nodes is given in the parameter
descriptions and the Technical Manual of the specific control model. Additionally the OPC UA NC Server validates the
configuration and reports found issues as machine events.
To access the data values of the configured variables, the OPC UA client application user needs the corresponding
user rights at the control. For information about the access rights, roles, and their management, refer to the Technical
Manual of the specific control model.

HEIDENHAIN PLC Basic Program Example
Starting with version 16, the PLC Basic Program contains an example configuration of machine-specific extensions
of the OPC UA NC Server.
On HEIDENHAIN programming stations the example is also integrated starting with the corresponding NC software
versions; see "Associated HEIDENHAIN CNC Controls", Page 15.

HEIDENHAIN | OPC UA Information Model | 10/2023 175

11
Lists

Lists

11.1 List of Tables
Table 1: Document Versions.. 8
Table 2: Supported Core Information Model Versions.. 15
Table 3: Examples of DataTypes.. 25
Table 4: Type Definition Table...26
Table 5: Common Node Attributes...27
Table 6: Common Object Attributes...27
Table 7: Common Variable Attributes... 28
Table 8: Common VariableType Attributes...28
Table 9: Common Method Attributes.. 28
Table 10: ErrorEventSeverityLevels...43
Table 11: MachineType Definition Attributes... 56
Table 12: MachineType Definition References...56
Table 13: MachineType Additional Subcomponents.. 57
Table 14: NCStateMachineType Definition Attributes.. 59
Table 15: NCStateMachineType Definition References... 59
Table 16: InterfaceType Definition Attributes...62
Table 17: InterfaceType Definition References.. 62
Table 18: ErrorInterfaceType Definition Attributes..63
Table 19: ErrorInterfaceType Definition References... 63
Table 20: ClearAllErrors Attributes..63
Table 21: ClearAllErrors Result Codes... 63
Table 22: ErrorEntryType Definition Attributes...64
Table 23: ErrorEntryType Definition References..64
Table 24: Clear Attributes... 65
Table 25: Clear Result Codes...65
Table 26: ErrorEntryListType Definition Attributes.. 66
Table 27: ErrorEntryListType Definition References... 66
Table 28: OperatingTimesType Definition Attributes..67
Table 29: OperatingTimesType Definition References... 67
Table 30: ControlInfoType Definition Attributes...68
Table 31: ControlInfoType Definition References..68
Table 32: OperatorMachineInfoType Definition Attributes.. 69
Table 33: OperatorMachineInfoType Definition References... 69
Table 34: ManufacturerInfoType Definition Attributes... 70
Table 35: ManufacturerInfoType Definition References.. 70
Table 36: SoftwareVersionListType Definition Attributes.. 72
Table 37: SoftwareVersionListType Definition References... 72
Table 38: ChannelType Definition Attributes.. 74
Table 39: ChannelType Definition References... 74
Table 40: ChannelType Additional Subcomponents...74
Table 41: ImportToolUsageCSV Attributes... 76
Table 42: ImportToolUsageCSV Signature... 76
Table 43: ImportToolUsageCSV Result Codes.. 77
Table 44: ImportToolUsageCSVByNodeId Attributes... 77
Table 45: ImportToolUsageCSVByNodeId Signature..77

HEIDENHAIN | OPC UA Information Model | 10/2023 178

Lists

Table 46: ImportToolUsageCSVByNodeId Result Codes...77
Table 47: ChannelListType Definition Attributes..78
Table 48: ChannelListType Definition References...78
Table 49: ProgramType Definition Attributes... 79
Table 50: ProgramType Definition References.. 79
Table 51: ProgramType Additional Subcomponents..79
Table 52: NCProgramStateMachineType Definition Attributes.. 81
Table 53: NCProgramStateMachineType Definition References... 81
Table 54: Cancel Attributes.. 83
Table 55: Cancel Result Codes..84
Table 56: Deselect Attributes... 84
Table 57: Deselect Result Codes.. 84
Table 58: SelectProgram Attributes..84
Table 59: SelectProgram Signature..84
Table 60: SelectProgram Result Codes...84
Table 61: SelectProgramByNodeId Attributes..85
Table 62: SelectProgramByNodeId Signature.. 85
Table 63: SelectProgramByNodeId Result Codes... 85
Table 64: Start Attributes.. 85
Table 65: Start Result Codes... 85
Table 66: Stop Attributes.. 86
Table 67: Stop Result Codes..86
Table 68: SelectBlockNumber Attributes...86
Table 69: SelectBlockNumber Signature... 86
Table 70: SelectBlockNumber Result Codes.. 86
Table 71: ToolDataManagementType Definition Attributes.. 87
Table 72: ToolDataManagementType Definition References... 87
Table 73: ToolDataManagementType Additional Subcomponents...88
Table 74: ToolDataManagementType Additional References.. 89
Table 75: CreateNewToolRecord Attributes... 90
Table 76: CreateNewToolRecord Signature..90
Table 77: CreateNewToolRecord Additional References...90
Table 78: CreateNewToolRecord Result Codes...90
Table 79: CreateNewToolRecordWithId Attributes..92
Table 80: CreateNewToolRecordWithId Signature..92
Table 81: CreateNewToolRecordWithId Additional References... 92
Table 82: CreateNewToolRecordWithId Result Codes...92
Table 83: DeleteToolRecord Attributes.. 94
Table 84: DeleteToolRecord Signature...94
Table 85: DeleteToolRecord Additional References..94
Table 86: DeleteToolRecord Result Codes... 94
Table 87: FindToolRecordIdentifiersByName Attributes..95
Table 88: FindToolRecordIdentifiersByName Signature.. 95
Table 89: FindToolRecordIdentifiersByName Result Codes... 95
Table 90: GetAllToolNumbers Attributes...96
Table 91: GetAllToolNumbers Signature... 96
Table 92: GetAllToolNumbers Result Codes.. 96

HEIDENHAIN | OPC UA Information Model | 10/2023 179

Lists

Table 93: GetAllToolNumbersAssignedToPockets Attributes.. 97
Table 94: GetAllToolNumbersAssignedToPockets Signature...97
Table 95: GetAllToolNumbersAssignedToPockets Result Codes..97
Table 96: GetAssignedPocketNumbers Attributes..98
Table 97: GetAssignedPocketNumbers Signature.. 98
Table 98: GetAssignedPocketNumbers Additional References..98
Table 99: GetAssignedPocketNumbers Result Codes... 98
Table 100: GetToolData Attributes..99
Table 101: GetToolData Signature.. 99
Table 102: GetToolData Additional References... 99
Table 103: GetToolData Result Codes... 99
Table 104: GetToolDataByCategory Attributes.. 100
Table 105: GetToolDataByCategory Signature...100
Table 106: GetToolDataByCategory Additional References.. 100
Table 107: GetToolDataByCategory Result Codes..100
Table 108: GetToolDataItems Attributes...101
Table 109: GetToolDataItems Signature... 101
Table 110: GetToolDataItems Additional References...101
Table 111: GetToolDataItems Result Codes.. 102
Table 112: GetToolIndices Attributes...103
Table 113: GetToolIndices Signature... 103
Table 114: GetToolIndices Additional References.. 103
Table 115: GetToolIndices Result Codes.. 103
Table 116: GetToolNumber Attributes... 104
Table 117: GetToolNumber Signature..104
Table 118: GetToolNumber Result Codes.. 104
Table 119: GetToolType Attributes... 105
Table 120: GetToolType Signature... 105
Table 121: GetToolType Additional References...105
Table 122: GetToolType Result Codes.. 105
Table 123: UpdateToolDataItems Attributes.. 106
Table 124: UpdateToolDataItems Signature...106
Table 125: UpdateToolDataItems Additional References..107
Table 126: UpdateToolDataItems Result Codes..107
Table 127: Validate3DModelFile Attributes...109
Table 128: Validate3DModelFile Signature... 109
Table 129: Validate3DModelFile Additional References...109
Table 130: Validate3DModelFile Result Codes.. 109
Table 131: ToolDataRepresentationType Definition Attributes.. 111
Table 132: ToolDataRepresentationType Definition References..111
Table 133: ToolDataRepresentationType Additional Subcomponents... 112
Table 134: ToolDataRepresentationType Additional References...112
Table 135: ToolDataCategoryType Definition Attributes..114
Table 136: ToolDataCategoryType Definition References...114
Table 137: ToolDataItemType Definition Attributes..115
Table 138: ToolDataItemType Definition References... 115
Table 139: ToolDataItemType Additional Subcomponents...115

HEIDENHAIN | OPC UA Information Model | 10/2023 180

Lists

Table 140: ValueDescription VariableTypes with DataTypes and Properties used at instances.........................116
Table 141: ToolTypeCategoryType Definition Attributes... 117
Table 142: ToolTypeCategoryType Definition References.. 117
Table 143: ToolTypeDescriptionType Definition Attributes...118
Table 144: ToolTypeDescriptionType Definition References.. 118
Table 145: LocalToolDataSetType Definition Attributes.. 119
Table 146: LocalToolDataSetType Definition References..119
Table 147: CreateToolDataFile Attributes... 120
Table 148: CreateToolDataFile Signature..120
Table 149: CreateToolDataFile Result Codes...120
Table 150: ServiceFileInterfaceType Definition Attributes...121
Table 151: ServiceFileInterfaceType Definition References.. 121
Table 152: ServiceFileInterfaceType Additional Subcomponents..122
Table 153: CreateServiceFile Attributes...123
Table 154: CreateServiceFile Signature... 123
Table 155: CreateServiceFile Additional References.. 123
Table 156: CreateServiceFile Result Codes.. 123
Table 157: CreateServiceFileByNodeId Attributes...125
Table 158: CreateServiceFileByNodeId Signature... 125
Table 159: CreateServiceFileByNodeId Additional References...125
Table 160: CreateServiceFileByNodeId Result Codes.. 125
Table 161: ErrorEventType Definition Attributes..128
Table 162: ErrorEventType Definition References...128
Table 163: ErrorClearedEventType Definition Attributes..130
Table 164: ErrorOccurredEventType Definition Attributes...131
Table 165: NCTransitionEventType Definition Attributes...132
Table 166: NCTransitionEventType Definition References..132
Table 167: ExecutionMessageEventType Definition Attributes..133
Table 168: ToolChangedEventType Definition Attributes.. 134
Table 169: ToolChangedEventType Definition References... 134
Table 170: ToolDataSetModificationEventType Definition Attributes... 135
Table 171: ToolDataSetModificationEventType Definition References.. 135
Table 172: BaseToolEventType Definition Attributes... 136
Table 173: BaseToolEventType Definition References...136
Table 174: ToolLockedEventType Definition Attributes... 137
Table 175: ToolLockedEventType Definition References...137
Table 176: CutterLocationArrayType Definition Attributes.. 140
Table 177: ProgramPositionArrayType Definition Attributes.. 141
Table 178: ErrorClassType Definition Attributes..144
Table 179: ErrorClassType Values..144
Table 180: ErrorGroupType Definition Attributes...145
Table 181: ErrorGroupType Values...145
Table 182: ErrorLocationType Definition Attributes.. 146
Table 183: ErrorLocationType Values.. 146
Table 184: NCOperatingMode Definition Attributes..147
Table 185: NCOperatingMode Values.. 147
Table 186: ToolRecordModificationType Definition Attributes...148

HEIDENHAIN | OPC UA Information Model | 10/2023 181

Lists

Table 187: ToolRecordModificationType Values... 148
Table 188: ToolDataSynchronizationStatusType Definition Attributes...149
Table 189: ToolDataSynchronizationStatusType Values... 149
Table 190: CutterLocationDataType Definition Attributes... 150
Table 191: CutterLocationDataType Structure...150
Table 192: ProgramPositionDataType Definition Attributes... 151
Table 193: ProgramPositionDataType Structure... 151
Table 194: ToolRecordModificationDataType Definition Attributes.. 152
Table 195: ToolRecordModificationDataType Structure..152
Table 196: ToolRecordIdentifierDataTypeDefinition Attributes.. 153
Table 197: ToolRecordModificationDataType Structure..153
Table 198: MagazinePocketIdentifierDataType Attributes.. 154
Table 199: MagazinePocketIdentifierDataType Structure... 154
Table 200: OPC UA NC Server Core NamespaceMetadata Object Attributes...156
Table 201: OPC UA NC Server Core NamespaceMetadata Object References..156
Table 202: Namespaces used in an OPC UA Server implementing the Core Information Model....................... 157
Table 203: Namespaces used in this specification.. 157
Table 204: CreateDirectory Result Codes... 164
Table 205: CreateFile Result Codes... 164
Table 206: Delete Result Codes.. 165
Table 207: MoveOrCopy Result Codes.. 165
Table 208: Open Result Codes.. 167
Table 209: Close Result Codes..168
Table 210: Read Result Codes.. 168
Table 211: Write Result Codes.. 168
Table 212: GetPosition Result Codes...168
Table 213: SetPosition Result Codes...168
Table 214: VariableTypes with DataTypes and Properties used for machine-specific nodes............................. 173
Table 215: HEIDENHAIN Tool Data Items.. 186
Table 216: HEIDENHAIN Tool Types..189
Table 217: Validate3DModelFile Issues EnumValues...190

HEIDENHAIN | OPC UA Information Model | 10/2023 182

Lists

11.2 List of Figures
Image 1: The Scope of OPC UA within an Enterprise...19
Image 2: A Basic Object in an OPC UA Address Space... 20
Image 3: The Relationship between Type Definitions and Instances..21
Image 4: Examples of References between Objects...22
Image 5: The OPC UA Information Model Notation.. 22
Image 6: Types of the Core Information Model...30
Image 7: Example Machine instance of MachineType..31
Image 8: Example StateMachine instance State of type NCStateMachineType.. 33
Image 9: State machine diagram of NCStateMachineType... 34
Image 10: Example Channels list with one Channel 0...35
Image 11: Example Program instance of type ProgramType.. 37
Image 12: States and Transitions of an NCProgramStateMachine...39
Image 13: Error-related types and example instance ...42
Image 14: Shortened example of a Machine instance with FileSystem.. 46
Image 15: Example ToolDataManagementType instance...49
Image 16: ObjectTypes used for the representation of the machine's tool data including an instance

example.. 51
Image 17: Example sequence how to create and synchronize a local copy of the machine's tool data at

client side...52
Image 18: Example ToolDataManagementType instance with Validation for 3DModels including Related-

ToolDataItems... 54
Image 19: Shortened example of a Machine instance with FileSystem.. 161
Image 20: Shortened example of a Machine instance with the relation between

machining channel-related types and FileSystem.. 163
Image 21: Shortened example of a Machine instance with ManufacturerExtensions.................................... 174

HEIDENHAIN | OPC UA Information Model | 10/2023 183

Annex

Annex | Annex A: Tool Data Reference

Annex A: Tool Data Reference
HEIDENHAIN Tool Data and Tool Types
Table 215 lists the tool data items defined by HEIDENHAIN as of NC software version 18. The tool types including the
unique identifiers are listed in Table 216.
The OPC UA NC Server in NC software version 18 does not support tool-type-specific data items for grinding and
dressing tools yet.
Depending on the control model and version, different data items and tool types are made available by the OPC UA
NC Server.
More information about each data item is given in the Technical Manual of the respective control as well as its Setup,
Testing and Running NC Programs User’s Manual or Setup and Program Run User’s Manual.
Regardless from the current configuration of the machine, all tool data item values are provided and interpreted
based on the metric system.
Table 215: HEIDENHAIN Tool Data Items

Category OPC UA Identifier Internal Table1) Internal Column

ToolNumber

ToolIndex

T,
TRN, GRD, DRS2)

T

T TYP

TRN TYPE

GRD TYPE

Type3)

DRS TYPE

T NAME

TRN NAME

GRD NAME

DRS NAME

Name4)

TCH TNAME

DatabaseId T DB_ID

SerialNumber TP SERIAL

Identification

Comment4) T DOC

Length4) T L

LengthOffset4) T L-OFFS

Radius4) T R

RadiusOffset4) T R-OFFS

CutterEdgeRadius T R2

NumberOfCutterEdges T CUT

CutterEdgeLength T LCUTS

UsableLength T LU

NeckRadius T RN

MaximumPlungeAngle T ANGLE

PointAngle T T-ANGLE

ThreadPitch T PITCH

RadiusAtTip T R_TIP

Geometry

CarrierKinematics4)7) T KINEMATIC

HEIDENHAIN | OPC UA Information Model | 10/2023 186

Annex | Annex A: Tool Data Reference

Category OPC UA Identifier Internal Table1) Internal Column

ToolShape 4)7) T TSHAPE

LengthX TRN XL

LengthY TRN YL

LengthZ TRN ZL

CutterRadius TRN RS

ToolOrientation TRN TO

SpindleOrientation TRN ORI

BAngleOffset TRN SPB-INSERT

CutterEdgeAngle TRN T-ANGLE

CutterEdgePointAngle TRN P-ANGLE

CutterEdgeWidth TRN CUTWIDTH

CutterEdgeSecondaryWidth TRN CUTLENGTH

LengthOversize T DL

RadiusOversize T DR

EdgeRadiusOversize T DR2

EdgeRadiusCompensationTable T DR2TABLE

LengthXOversize TRN DXL

LengthYOversize TRN DYL

LengthZOversize TRN DZL

CutterEdgeRadiusOffset TRN DRS

CutterEdgeWidthOffset TRN DCW

WorkpieceDiameterCorrection5)4) TRN WPL-DX-DIAM

Correction

WorkpieceLengthCorrection5)4) TRN WPL-DZL

LockedStatus T TL

ReplacementToolNumber T RT

MaximumLifetime T TIME1

MaximumLifetimeToolCall T TIME2

AllowedOvertime T OVRTIME

CurrentLifetime T CUR_TIME

ToolLife

LastUsage T LAST_USE

LengthTolerance T LTOL

RadiusTolerance T RTOL

EdgeRadiusTolerance T R2TOL

LengthBreakageTolerance T LBREAK

ToolWear

RadiusBreakageTolerance T RBREAK

MaximumSpeed T NMAX

Liftoff T LIFTOFF

ActiveChatterControl T ACC

Technology

ActiveFeedControlStrategy T AFC

HEIDENHAIN | OPC UA Information Model | 10/2023 187

Annex | Annex A: Tool Data Reference

Category OPC UA Identifier Internal Table1) Internal Column

AfcReferencePower T AFC-LOAD

AfcOverloadWarning T AFC-OVLD1

AfcOverloadSwitchoff T AFC-OVLD2

FrontfaceCutterWidth T RCUTS

CuttingDirection T DIRECT

ToolEdgeMaterial T TMAT

CuttingData T CUTDATA

TouchprobeModel TP TYPE

TP NOTouchprobeRecord6)

T TP_NO

StylusShape TP STYLUS

ProbingFeedRate TP F

SelectionPrePositioningMaxFeed TP F_PREPOS

PrePositioningMaxFeedRate TP FMAX

MaximumProbingRange TP DIST

PrePositioningSafetyDistance TP SET_UP

SelectionCollisionReaction TP REACTION

TrackingCalibrationAngleActive TP TRACK

CalibrationSpindleAngle TP CAL_ANG

CalibrationPrincipalAxisOffset TP CAL_OF1

Touchprobe

CalibrationSecondaryAxisOffset TP CAL_OF2

AttributeForPocket4) T PTYPManufacturer

PlcStatus T PLC
1) Tool and pocket table identifiers (with default source file name)

T: Tool table tool.t
TP: Touch probe table touchprobe.tp
TRN: Turning tool table toolturn.trn
GRD: Grinding tool table toolgrind.grd
DRS: Dressing tool table tooldress.drs
TCH: Pocket table tool_p.tch

2) The T column is the primary key of the tables. It links the record in table T to a record with tool type specific data
in the other tables.

3) Some of the tool types are internally defined by a main tool type (the category) and a specific subtype information.
The Type combines the information so that one value identifies the type of a tool uniquely. The unique tool type
identifiers are listed in Table 216.

4) The definition and metadata of the data item can be edited by the machine manufacturer. It is done by changes of
machine parameter values in the machine's configuration.
The unit, maximum length, allowed characters, minimum, maximum, and default value can differ from the default
values configured by HEIDENHAIN.
The OPC UA NC Server provides the values based on the current configuration of the machine. (If the
configuration is changed during runtime of the server and after the first instantiation of the nodes, for example,
during commissioning of the machine, the server must be restarted to apply the changes.)
In general the machine manufacturer has the possibility to replace parts of the machine's configuration and so to

HEIDENHAIN | OPC UA Information Model | 10/2023 188

Annex | Annex A: Tool Data Reference

change the definition of all tool data items. Machine manufacturers can use this additional technique, but must be
careful to avoid potentially incompatible changes.

5) Can be enabled by the machine manufacturer at the configuration of the machine.
6) Informational, read-only; automatically handled internally.
7) Tool data items referring to 3D model files; represented by instances of 4.19 "ToolDataItemType" with FileLocation

component and support of 3D model file validation (see "Validation 3DModels", Page 108)

Table 216: HEIDENHAIN Tool Types

Category OPC UA Identifier Description

MILL_MILL Milling cutter

MILL_ROUGH Roughing cutter

MILL_FINISH Finishing cutter

MILL_FACE Face milling cutter

MILL_BALL Ball-nose cutter

MILL_TORUS Toroid cutter

MILL_CHAMFER Chamfer mill

MILL_SIDE Side milling cutter

MILL_THREAD Thread mill

MILL_THREAD_CSINK Thread mill with countersink

MILL_THREAD_SINGLE Single form thread mill

MILL_THREAD_MCUT Thread mill with multiple cuts

MillingTools

MILL_THREAD_CIRC Circular thread mill

DRILL_DRILL Drill

DRILL_TAP Tap

DRILL_CENTER Spotting drill

DRILL_REAM Reamer

DRILL_CSINK Countersink

DRILL_TSINK Counterbore for through holes

DRILL_BORE Boring tool

DRILL_BCKBORE Back boring tool

DrillingTools

DRILL_THREAD_MILL Drill thread milling cutter

TURN_ROUGH Roughing tool

TURN_FINISH Finishing tool

TURN_THREAD Threading tool

TURN_RECESS Recessing tool

TURN_BUTTON Button tool

TurningTools

TURN_RECESS_TURN Recess-turning tool

Touchprobes TOUCH_PROBE Touch probe

GRIND_PIN Grinding pin (cylindrical)

GRIND_CONE Grinding pin (conical)

GRIND_CUP Cup wheel

GrindingTools1)

GRIND_CYLINDER Straight wheel

HEIDENHAIN | OPC UA Information Model | 10/2023 189

Annex | Annex A: Tool Data Reference

Category OPC UA Identifier Description

GRIND_ANGULAR Slant wheel

GRIND_FACE Facing wheel

DRESS_FIX_RADIUS Stationary dresser (with radius)

DRESS_ROT_RADIUS Rotating dresser (with radius)

DRESS_FIX_FLAT Stationary dresser (flat)

DressingTools1)

DRESS_ROT_FLAT Rotating dresser (flat)

UNDEF Undefined
1) The OPC UA NC Server in NC software version 18 does not support grinding and dressing tool types yet.

3D Model Files for Tools: Validation Issues List
General information about usage of 3D models for tools and tool carriers (e.g., supported formats) is given in the
Technical Manual of the respective control as well as its Setup, Testing and Running NC Programs User’s Manual or
Setup and Program Run User’s Manual.
The 3DModel component of 4.16 "ToolDataManagementType" provides a method to check 3D model files to be used
for tool data items CarrierKinematics and ToolShape. Table 217 lists the possible 3D model file validation issues as of
NC software version 18. (The list might be extended in future versions.)
Table 217: Validate3DModelFile Issues EnumValues

Value DisplayName Description

1 FormatUnknown The file format is not a supported model format.

2 FileTooLarge The file is too large to load.

3 FileInaccessible Cannot open file.

4 ErrorOnRead An error occurred while reading the file.

5 EmptyModel The model is empty.

6 MeshNotWatertight The model must have a closed shell, but it doesn't.

7 TooManyTriangles The mesh has more triangles than are supported.

8 NotSuitableForItem The file is not suitable for the specified use case.

9 FileNameInvalid The file name contains incompatible characters.

10 FileNameTooLong The file name is longer than is allowed for the data item.

11 FormatNotSuitable The file format does not match the use case.

12 WrongLocation The file location does not match the use case.

13 OverriddenFile There is another file with this name in a location of higher priority.

14 MeshTypeMissing The file requires a mesh type, but none is specified.

999 UnknownIssue An unknown issue was found during validation.

Tool Data of Machine Manufacturers
Machine manufacturers can define machine-specific tool data. They can add more columns to the internal tool data
tables.
With NC software version 18 the OPC UA NC Server identifies the additional data items by the internal table identifier
followed by a double underscore and the internal column identifier (e.g., "T__EXAMPLEDATA"). The data items are
grouped into a ManufacturerExtension tool data category.
Machine manufacturers manage the data items individually. It is possible that two machines of different
manufacturers provide a data item with the same name but different meaning and usage.
With NC software version 18 all machine-specific tool data items are taken as potentially relevant for all tool types
depending on the internal data source table.

HEIDENHAIN | OPC UA Information Model | 10/2023 190

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
 +49 8669 31-0
 +49 8669 32-5061
info@heidenhain.de

Technical support  +49 8669 32-1000
Measuring systems  +49 8669 31-3104
 service.ms-support@heidenhain.de
NC support  +49 8669 31-3101
 service.nc-support@heidenhain.de
NC programming  +49 8669 31-3103
 service.nc-pgm@heidenhain.de
PLC programming  +49 8669 31-3102
 service.plc@heidenhain.de
APP programming  +49 8669 31-3106
 service.app@heidenhain.de

www.heidenhain.com

Original document
1309365 · Ver06 · 10/2023 · PDF *I1309365*

	Information Model
	Application-Oriented Monitoring and Control
	Content
	Terms of Use
	About this Document
	1 Introduction
	1.1 Scope
	1.2 Reference Documents
	1.2.1 OPC Foundation
	1.2.2 HEIDENHAIN

	1.3 Associated HEIDENHAIN CNC Controls

	2 Fundamentals
	2.1 Introduction to OPC Unified Architecture
	2.1.1 What is OPC UA?
	2.1.2 Basics of OPC UA

	2.2 Information Modeling in OPC UA
	2.3 Abbreviations and Terms
	2.4 Conventions used in this document
	2.4.1 Conventions for Node descriptions
	2.4.2 NodeIds and BrowseNames
	2.4.3 Common Attributes

	3 Core Information Model Overview
	3.1 Core Types Overview
	3.2 Machine Instance
	3.3 General Information about the Machine
	3.4 NC State Machine
	3.5 Machining Channel
	3.6 NC Program Execution Monitoring and Control
	3.7 Errors, Warnings and Notifications
	3.8 Operating Times of the Machine
	3.9 File System Access
	3.10 Tool Data Management

	4 OPC UA ObjectTypes
	4.1 MachineType
	4.2 NCStateMachineType
	4.3 InterfaceType
	4.4 ErrorInterfaceType
	4.5 ErrorEntryType
	4.6 ErrorEntryListType
	4.7 OperatingTimesType
	4.8 ControlInfoType
	4.9 OperatorMachineInfoType
	4.10 ManufacturerInfoType
	4.11 SoftwareVersionListType
	4.12 ChannelType
	4.13 ChannelListType
	4.14 ProgramType
	4.15 NCProgramStateMachineType
	4.16 ToolDataManagementType
	4.17 ToolDataRepresentationType
	4.18 ToolDataCategoryType
	4.19 ToolDataItemType
	4.20 ToolTypeCategoryType
	4.21 ToolTypeDescriptionType
	4.22 LocalToolDataSetType
	4.23 ServiceFileInterfaceType

	5 OPC UA EventTypes
	5.1 ErrorEventType
	5.2 ErrorClearedEventType
	5.3 ErrorOccurredEventType
	5.4 NCTransitionEventType
	5.5 ExecutionMessageEventType
	5.6 ToolChangedEventType
	5.7 ToolDataSetModificationEventType
	5.8 BaseToolEventType
	5.9 ToolLockedEventType

	6 OPC UA VariableTypes
	6.1 CutterLocationArrayType
	6.2 ProgramPositionArrayType

	7 OPC UA DataTypes
	7.1 ErrorClassType
	7.2 ErrorGroupType
	7.3 ErrorLocationType
	7.4 NCOperatingMode
	7.5 ToolRecordModificationType
	7.6 ToolDataSynchronizationStatusType
	7.7 CutterLocationDataType
	7.8 ProgramPositionDataType
	7.9 ToolRecordModificationDataType
	7.10 ToolRecordIdentifierDataType
	7.11 MagazinePocketIdentifierDataType

	8 Namespaces
	8.1 Namespace Metadata
	8.2 Handling of OPC UA Namespaces

	9 Machine File System Access
	9.1 Introduction
	9.2 FileDirectoryType
	9.3 FileType
	9.4 Warnings and Important Hints

	10 Extensions of the Machine Manufacturer
	10.1 Introduction
	10.2 Manufacturer Extensions
	10.3 Information for Machine Manufacturers

	11 Lists
	11.1 List of Tables
	11.2 List of Figures

	Annex
	Annex A: Tool Data Reference

